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We propose an “automatic” approach to analyze the results of the on-the-fly trajectory surface hopping
simulation on the multi-channel nonadiabatic photoisomerization dynamics by considering the trajec-
tory similarity and the configuration similarity. We choose a representative system phytochromobilin
(PΦB) chromophore model to illustrate the analysis protocol. After a large number of trajectories are
obtained, it is possible to define the similarity of different trajectories by the Fréchet distance and to
employ the trajectory clustering analysis to divide all trajectories into several clusters. Each cluster in
principle represents a photoinduced isomerization reaction channel. This idea provides an effective
approach to understand the branching ratio of the multi-channel photoisomerization dynamics. For
each cluster, the dimensionality reduction is employed to understand the configuration similarity in the
trajectory propagation, which provides the understanding of the major geometry evolution features in
each reaction channel. The results show that this analysis protocol not only assigns all trajectories into
different photoisomerization reaction channels but also extracts the major molecular motion without
the requirement of the pre-known knowledge of the active photoisomerization site. As a side product
of this analysis tool, it is also easy to find the so-called “typical” or “representative” trajectory for
each reaction channel. Published by AIP Publishing. https://doi.org/10.1063/1.5048049

I. INTRODUCTION

Photoinduced isomerization reactions via the double-
bond twisting motions on molecular excited states widely
exist in photochemistry.1–4 For instance, the photoisomer-
ization processes of the chromophores in photoreceptor pro-
teins are the primary steps in the solar-to-mechanical energy
conversions, which trigger important photoinduced biological
functions.1,2,4–6 The photoisomerization mechanism received
considerable research interests in the last decades.1–5,7,8

Among these studies, theoretical calculations clarified that
nonadiabatic dynamics at conical intersections are essential
for photoisomerization processes.1,2 The simulation of nona-
diabatic dynamics needs to take the coupled electron-nucleus
motion into account, in which Born-Oppenheimer approxima-
tion breaks down.9,10 Although many theoretical approaches
were proposed to solve nonadiabatic dynamics,2,3,9–41 trajec-
tory surface hopping (TSH) approaches become popular due
to their simplicity and easy implementation.32,34,40–54 With
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the development of computational facilities, the on-the-fly
TSH dynamics provides us a reasonable way to simulate
the nonadiabatic dynamics of polyatomic molecules by the
inclusion of all degrees of freedom.7,34,41–47,51,52,55–68 Nowa-
days, the combination of the on-the-fly dynamics and TSH
(or other theoretical approaches) becomes a promising tool to
understand the photoisomerization mechanism at the atomic
level.1–3,7,8,41–43,45–47,51,60,63,65,69–76

The on-the-fly TSH dynamics often requires the compu-
tation of a large number of trajectories. The statistical analy-
sis over all trajectories gives various dynamical features, for
instance, the excited-state population decay, the structure evo-
lution, and the geometrical features at potential energy surface
(PES) crossings. In the typical analysis of the TSH results,
the active reaction coordinates are normally identified by the
eye view of many trajectories and the results are discussed
by the explanation of a few “representative” trajectories.42,43

This approach also largely relies on the preliminary under-
standing of the nonadiabatic dynamics, such as the reaction
pathways and the relevant conical intersections. This “eye-
view” analysis routine becomes not easy when the system
size becomes large, the complicated molecular motions are
involved, many trajectories are concerned, or the pre-known
knowledge on the reaction channels is missing. Thus, the
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novel analysis tool should be developed to examine the TSH
simulation results, particularly because more and more stud-
ies take the on-the-fly TSH calculations to treat the different
nonadiabatic dynamics of various complicated systems.41 As
a typical example, the analysis of the TSH simulation on the
photoisomerization dynamics is not trivial because the twist-
ing motions may happen at different twisting sites, the major
motion may involve the strong couplings between different
nuclear degrees of freedom, and several reaction channels may
result in different photoproducts.

Unsupervised Machine Learning (ML) algorithms, par-
ticularly dimensionality reduction approaches, such as
principle component analysis (PCA),77–79 multidimen-
sional scaling (MDS),80,81 isometric feature mapping
(ISOMAP),82,83 diffusion map,84,85 autoencoder,86 etc., were
employed to examine the main feature of the geometrical evo-
lution in the ground-state molecular dynamics simulation.87–94

In recent years, some groups tried to use such tools in the
analysis of nonadiabatic dynamics,95–100 which tried to auto-
matically extract the main geometrical feature of the trajec-
tory evolution. The underlining idea is as follows. A single
geometry in a trajectory is represented by a point in a high-
dimensional coordinate space. After the collection of a large
number of geometries generated by the trajectory propaga-
tion in the nonadiabatic dynamics, these unsupervised ML
approaches construct a mapping from the high-dimensional
space to a low-dimensional space, which tries to conserve the
pattern feature of data point distribution. The active motion
responsible for the nonadiabatic dynamics was then examined
in the low-dimensional space. These efforts help us to under-
stand the geometric evolution in the nonadiabatic dynamics.
However, the application of these approaches in real analysis
tasks may not be fully straightforward. For instance, such an
idea may not work properly in the multi-channel situations
because different reactive coordinates may be responsible for
different channels. Most importantly, the analysis in the con-
figuration space does not directly take an important dynamic
feature, namely, “time evolution,” into account. Instead the
time feature is indirectly included afterwards, through mon-
itoring the movement of the dataset in the low-dimensional
space constructed by the dimensionality reduction.

In this paper, we propose an improved “automatic”
approach to analyze the on-the-fly TSH results by re-
considering the concept of “trajectory evolution with time
being.” Instead of only performing the dimensionality reduc-
tion in coordinate space, we also examine the trajectory evolu-
tion in the so-called “trajectory space,” in which we measure
the “distance” or “dissimilarity” between different trajectories.

The estimation of the trajectory similarity is widely employed
in various scientific fields.101–111 In the current work, the so-
called Fréchet distance108,112–114 was taken to evaluate the
“dissimilarity” between two trajectories. After the construc-
tion of the pair-wise dissimilarity matrix for all trajectories,
the clustering method is employed to assign the trajectories
into different groups. In this trajectory clustering analysis,
each group in principle should represent a reaction channel.
The reactive coordinate responsible for each channel is fur-
ther identified by the dimensionality reduction approaches in
the coordinate space, suggested in our previous work.95 Over-
all, this analysis considers first the trajectory similarity and
second the configuration similarity, which makes the analysis
procedure more transparent and automatic. This provides us a
powerful tool to analyze the nonadiabatic dynamics with many
reactive channels.

As the first attempt, we wish to know whether the above
idea can clearly identify distinguishing channels and clarify
their active motion in the photoisomerization dynamics. The
reason is that the photoisomerization serves a kind of pro-
totype reactions, in which the twisting motions at different
sites give rather different reaction channels and several dis-
tinguishing photoproducts are formed as a result.1–4 Thus, in
principle, this type of the nonadiabatic dynamics provided us
a very good model to examine our idea on the estimation of
the trajectory similarity and the geometrical similarity. In this
work, we take the phytochromobilin (ZaZsZa PΦB in Fig. 1)
model as an example to check the performance of the above
proposed analysis method. As widely existing plant’s pho-
toreceptors, the PΦB and other phytochromes were studied
extensively.1,6,70,115–124 The PΦB system decays to the ground
state via different conical intersections, and finally, several
photo-products are formed.1,70,124 Thus, the PΦB model is
an ideal system to test our new approach. The results show
that the analysis approach with the combination of the tra-
jectory similarity and the configuration similarity is a very
powerful protocol that can perform the automatic and effi-
cient analysis of nonadiabatic photoisomerization dynamics
with several channels and different products. Although the
current work is based on the TSH calculations of photoiso-
merization, it is also possible to use the similar idea to under-
stand other types of trajectory-based nonadiabatic dynamics
simulation.

This work is organized as follows. Section II outlines the-
oretical methods, implementation, and computational details.
Section III shows the results, and Sec. IV provides the
discussions. Section V gives the conclusion of the current
work.

FIG. 1. The model of the ZaZsZa iso-
mer of PΦB and some key coordinates.



244104-3 Li et al. J. Chem. Phys. 149, 244104 (2018)

II. THEORETICAL METHODS AND COMPUTATIONAL
DETAILS
A. Theoretical methods
1. Trajectory surface hopping dynamics

Many previous studies have provided the detailed discus-
sion on Tully’s TSH approaches,32,42,43,46,47,52 so we outline
the main concept here. In Tully’s TSH framework, the nuclear
motion was treated by the classical Newtonian mechanics,
while the electronic motion was described by the quantum
evolution. The nonadiabatic transitions were described by
the trajectory hops between different electronic states, and
the hopping probability was determined by Tully’s fewest
switches algorithm.32 The initial conditions (such as geome-
tries and velocities) were sampled by the Wigner distribution
of the ground vibrational level of the normal modes on the
electronic ground state.

2. Configuration similarity definition

Mathematically, a single geometry is represented by a
point in a high-dimensional coordinate space, which is char-
acterized by a high-dimensional vector. Thus, the similar-
ity/dissimilarity between two geometry snapshots is measured
by the distance between the two corresponding points in the
metric view. This provides us the basic idea on the defini-
tion of the dissimilarity matrix D over all snapshots. Fol-
lowing previous work,95–97 the elements dij in the D matrix
were defined by the root mean square distance (RMSD) of
two configurations. In the RMSD calculations, it is neces-
sary to remove the contribution of translational and rotational
motions.95,125,126

3. Trajectory similarity definition

One of central ideas in this work involves the definition
of the similarity between two trajectories. Different numerical
approaches were proposed to compute the trajectory similar-
ity,101–114 such as the Hausdorff distance, Fréchet distance, and
so on.102,113 Among them, the Fréchet distance is a good can-
didate to conduct the analysis of trajectory evolution because
the chronological order is taken into account explicitly and this
analysis approach also does not require the same propagation
duration for all trajectories.102,113,127

Roughly speaking, it is possible to understand the Fréchet
distance in an intuitive way. Let us assume that a man is walk-
ing along a path P and his dog is running along another path
Q. They are connected by a leash in the whole walking proce-
dure. Both starting and ending points are known for path P and
path Q. The man and his dog move along their own pathways
independently under constrain that their motion must follow
the monotonic chronological way from the starting point to the
ending point, and no backward movement is allowed. When
the dog changes speed to make the leash as slack as possi-
ble, the length of the shortest leash sufficient for both the man
and his dog moving along their own paths defines the Fréchet
distance between two curves P and Q.

Next, we discussed the formal mathematical view of the
Fréchet distance.108,112–114 Suppose that P and Q are two given
curves in the metric space Vs, which are represented by the

continuous mappings as follows:

P :
[
p0, p1

]
→ Vs

[
p0, p1 ∈ Rs, p0 ≤ p1

]
,

Q :
[
q0, q1

]
→ Vs

[
q0, q1 ∈ Rs, q0 ≤ q1

]
,

(1)

where p0 and p1 (or q0 and q1) are the starting and ending
points of the curve P (or Q) in the space of Rs. The Fréchet
distance between P and Q is defined as

δF(P, Q) = inf
α,β

max
t∈[0,1]

{dist[P(α(t)), Q(β(t))]}, (2)

where α(t) [or β(t)] is an arbitrary continuous non-decreasing
function that maps the unit interval [0,1] onto [p0, p1] (or
[q0, q1]), namely, α(0) = p0 and α(1) = p1 [or β(0) = q0 and
β(1) = q1].

For computational practices, an arbitrary continuous
curve is typically approximated by a polygonal curve, and thus
the discrete Fréchet distance,108,112–114 instead of its continu-
ous counterpart, is often used to examine the dissimilarity of
two polygonal curves.

Two trajectories P and Q are approximated by polygonal
curves represented by two sequences S(P) (p1, . . . pi . . ., pn)
and S(Q) (q1, . . ., qj, . . ., qm), where pi is the i-th snapshot
of the trajectory P and qj is the j-th snapshot of the trajectory
Q. The coupling C between P and Q in the production space
S(P) × S(Q) is given by a sequence

C(P, Q) ≡ (pa1 , qb1 ), (pa2 , qb2 ), . . . , (pak , qbk ), . . . , (paT , qbT ),

(3)

with correct starting and ending conditions a1 = b1 = 1,
aT = n, and bT = m.

Notice that here the lengths of S(P) and S(Q), namely,
n and m, may not be the same. However, it is always possi-
ble to construct C(P, Q) because two successive elements, for
instance, pak and pak+1 , may be the same. More precisely, start-
ing from a point pair (pak , qbk ), one point (or both points) should
move to its next position (or their next positions) at each step.
This means that one of the following three conditions should
be satisfied:

(I) ak+1 = ak + 1 bk+1 = bk ,

(II) ak+1 = ak bk+1 = bk + 1,

(III) ak+1 = ak + 1 bk+1 = bk + 1.
(4)

When the coupling C is calculated, the corresponding coupling
distance is defined as the largest distance between pak and qbk ,

‖DC‖ ≡ max
k=1,2,...,T

dist(pak , qbk ). (5)

Because the coupling between two given trajectories P and
Q is not uniquely defined, all possible couplings C form a
space Rs(C). The discrete Fréchet distance between P and Q
is defined as the minimum coupling distance over all possible
couplings in the space Rs(C), namely,

δdF ≡ min{ ‖Dc‖ | C ∈ Rs(C) }. (6)

It is not easy to get all possible couplings in a space Rs(C)
by the straightforward way. One possible solution to perform
such calculations was proposed by Alt and Godau,113 while
the mathematical implementation is difficult. However, Eiter
and Mannila112 once proved that it is possible to calculate the
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discrete Fréchet distance between two trajectories (P and Q)
by the dynamical programing way. This provides the sim-
ple way for the computational implementation. This approach
was clearly discussed in several previous studies,108,112,114

even including the pseudocodes. According to this idea, it
is possible to compute the discrete Fréchet distance by the
dynamical programming algorithm.108,112,114,128 This allows
us to compute the pair-wise dissimilarity matrix over all tra-
jectories, giving the possibility to employ various machine
learning algorithms in further analysis. More discussions on
Fréchet distance and computational details are found in the
Appendix, Subsections 1–3.

4. Multi-dimensional scaling

As a widely used dimensionality reduction method, the
classical MDS constructs the low-dimension space, in which
the pair-wise dissimilarities between all data points under
study are preserved.80 The MDS algorithm starts from the
construction of the pair-wise dissimilarity matrix D with the
dimension n × n, where n is the number of objects. dij repre-
sents the “distance” between two data points, and then, it is
possible to define the scalar product matrix B as

B = −
1
2

JD(2)J, (7)

where D(2) is the squared proximity matrix with elements dij
2,

namely,

D(2) =
[
dij

2
]
, (8)

and J is the center matrix defined as

J = I − n−111T, (9)

where I is a unit matrix. 1 is a column vector with all ele-
ments equal to 1, and 1T is the corresponding row vector. Thus,
the product of these two matrices 11T gives a matrix with all
elements equal to 1.

Next, we diagonalize the B matrix and reorder all eigen-
values from largest to smallest. The larger eigenvalue cor-
responds to a more important dimension. For instance, if a
reduced space with m-dimension is considered, we need to
take the m largest positive eigenvalues λ1, . . ., λm and their
corresponding eigenvectors e1, . . ., em. The coordinates of all
data points in the low-dimensional space are computed by

L = (e1 · · · em)
*....
,

√
λ1 · · · 0
...

. . .
...

0 · · ·
√
λm

+////
-

, (10)

The relative embedding error is computed by the stress
function; see the MDS textbook.80

In current work, two kinds of pair-wise dissimilarity
matrices D are involved. We first employ the MDS to analyze
the trajectory similarity. In this step, the “pair-wise dissim-
ilarity matrix” describes the dissimilarity between different
trajectories, which is named as Dtraj. The distance between
two trajectories is defined as their Fréchet distance. In the sec-
ond step, we try to select all trajectories belonging to the same

cluster, collect geometries from these chosen trajectories (sim-
ilar trajectories), and then define the pair-wise dissimilar-
ity matrix between all chosen geometries. This dissimilarity
matrix is then named as Dgeom, in which all elements are
the RMSD between two aligned geometries. All details can
be found in the below discussions on the implementation
details.

5. DBSCAN clustering algorithm

Here we selected the DBSCAN (density-based spatial
clustering of applications with noise)129,130 algorithm to per-
form the trajectory clustering analysis after the construction
of the pair-wise dissimilarity matrix of all trajectories. The
DBSCAN is a density-based clustering algorithm. The basic
assumption of the DBSCAN method is that all data points form
the high-density and low-density areas. Then it is possible to
put all points belonging to the same high-density area together
to define a cluster, while different clusters are separated by the
low-density areas. The data points located in the low-density
areas are labeled as outliers. Because a large number of trajec-
tories are computed in the TSH calculation, it is possible to get
a few abnormal trajectories, which give a few so-called outer
data points that do not belong to any cluster in the trajectory
clustering analysis. As a density-based method, the DBSCAN
cluster algorithm is robust to outlier points relevant to these
abnormal trajectories.

B. Implementation details
1. PΦB model and on-the-fly TSH
dynamics simulation

Phytochromobilin (PΦB) acts as the chromophore of plant
phytochromes. Two conformers (ZaZsZa and ZsZsZa) are
important during the Pr and Pfr conversion, as summarized
in Ref. 1. The current paper is mainly for the examination of
the novel analysis approach of the trajectory surface hopping
results. We choose the ZaZsZa configuration (Fig. 1) as the ini-
tial isomer because our previous work discussed the dynamical
details of this isomer from the traditional analysis way (distri-
bution of the key coordinates, typical trajectory, and so on).70

Thus, it is more transparent to compare the results obtained
from the current analysis tool and the previous calculation. In
addition, the resonance Raman (RR) spectroscopy work has
demonstrated that this isomer should be an important isomer
in phytochromes.115

The nonadiabatic photoisomerization dynamics of the
PΦB model is investigated by the TSH method at the semiem-
pirical OM2/MRCI level (the orthogonalization model 2
semiempirical method combined with multi-reference config-
uration interaction algorithm).131–133 The Wigner sampling of
the lowest vibrational level of the electronic ground state is
performed. All trajectories start from the S1 state, and the
propagation lasts up to 1 ps. We use the same computational
setups, such as the active space, discussed in previous stud-
ies.70,95,96 To analyze the simulation data easily, the TSH
calculations are performed by the JADE code46 by calling
the OM2/MRCI131–133 calculations with MNDO code.134 In
the current work, the trajectory clustering analysis requires a
large number of trajectories (see Sec. III).
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2. Analysis of excited-state photoisomerization
dynamics before S1-S0 hops

Normally, the analysis of the multi-channel nonadiabatic
dynamics should identify which conical intersection is respon-
sible for the internal conversion and which molecular motion
is relevant to the excited-state dynamics. For the current
PΦB model, this task becomes the identification of the differ-
ent isomerization channels via different conical intersections.
To address these key questions, the following protocols are
employed.

(a) We selected the geometries at every 10 fs for each
trajectory before the S1-S0 hops. In this sense, the
excited-state dynamics before the S1 decay is fully char-
acterized by these trajectories containing a large number
of snapshots.

(b) For two trajectories P and Q, we computed the dis-
tances between any two geometries pi (pi ε P) and
qj (qj ε Q). In this step, the distance between two
geometries is defined by their RMSD by neglecting
hydrogen atoms. We performed the alignment of each
snapshot with respect to the reference geometry
(ground-state minimum) to remove the contribution of
translational and rotational motions. This alignment
approach, instead of the pair-wise alignments for all
snapshots, confirms that a correct metric space is formed
in the Fréchet distance calculations.108,128,135

(c) The dissimilarity of each pair of trajectories is defined
by the discrete Fréchet distance. Finally, we got the
pairwise distance matrix Dtraj of all trajectories, whose
dimension is Ntraj × Ntraj.

(d) The MDS analysis was performed in the basis of the pair-
wise distance matrix Dtraj of all trajectories. Then in the
two-dimensional space, each trajectory is represented
by a point and the basic feature of the data distribution
is easily examined. When two data points are closer, two
corresponding trajectories are more “similar.”

(e) The trajectory clustering analysis was performed with
the DBSCAN clustering algorithm, which divide all
data points into different groups in the two-dimensional
space. In the trajectory clustering, the trajectories with
high similarity in principle should be assigned into the
same group.

(f) In the ideal case, each cluster corresponds to a decay
channel in the nonadiabatic photoisomerization dynam-
ics after the trajectory clustering analysis. For this pur-
pose, we performed the additional check. The clustering
analysis divided all trajectories into different groups.
Next based on the trajectories belonging to the same
cluster (for instance, cluster A), we took their Fréchet
distances to construct the pair-wise distance matrix
(labeled as Dtraj A), which is the submatrix of the full
pair-wise dissimilarity matrix Dtraj of all trajectories.
Based on Dtraj A, the MDS dimensionality reduction
and the DBSCAN clustering algorithm were performed
again, to see whether it is possible to divide clus-
ter A into several smaller sub-clusters. Notice that the
different reduced spaces were formed at two succes-
sive runs because the different distance matrices were

employed in the dimensionality reduction before the
clustering analysis. This procedure should be repeated
until each generated small cluster only gives a single
dense dataset. Until now, we wish that each cluster in
principle corresponds to a single nonadiabatic decay
channel.

(g) The next task is to identify which reactive coordinates
are responsible for a single nonadiabatic decay chan-
nel. In this step, we simply took the dimensionality
reduction analysis discussed in our previous work.95

The trajectories belonging to the same cluster were
collected. All snapshots belonging to the selected trajec-
tories were used to calculate the pair-wise dissimilarity
matrix Dgeom. Then the MDS analysis based on Dgeom

was performed to construct the low-dimensional space,
and each point now refers to a configuration. For the
data points located in the same grid area, we over-
lapped their configurations together and examined the
characteristic geometric feature. In this way, it is pos-
sible to identify the major reactive coordinate respon-
sible for a particular channel in the nonadiabatic decay
dynamics.

3. Analysis of full nonadiabatic photoisomerization
dynamics towards different photoproducts

We collected trajectories belonging to the same clus-
ter (for instance, cluster A) generated from the analysis of
excited-state dynamics before S1-S0 hops, after making sure
that each cluster should not be divided again. These trajectories
in principle pass the same conical intersections, while differ-
ent products may be formed after internal conversion. Next, we
wish to understand their full nonadiabatic dynamics towards
photoproducts. We expect that cluster A can be divided into
several smaller clusters again after the ground-state dynamics
is considered.

The geometry re-sampling for these trajectories is per-
formed with a larger time step (40 fs) and a longer time duration
(1 ps). The employment of the longer time duration confirms
that photoproducts are formed by the successive ground-state
dynamics after the internal conversion. The use of the larger
time step is mainly for reducing computational cost. We per-
formed the trajectory clustering analysis again by taking the
ground-state dynamics into account for the trajectories passing
the same conical intersection. Several clusters were formed,
and we hope that each cluster includes trajectories with high
similarity, namely, passing the same conical intersection and
forming the same photoproduct. The analysis of the geometry
similarity with the dimensionality reduction approach is again
employed for each group of trajectories, to clarify the major
molecular motions in a channel.

4. The definition of the “typical trajectory”

As a side product of the trajectory clustering process, it is
easy to find the “typical trajectory” for each reaction channel.
As discussed in Sec. II B 2, all trajectories belonging to the
same non-dividable cluster should be “similar” in trajectory
clustering analysis. Thus, if one trajectory shows the highest
similarity with rest of the trajectories within a cluster, this one
can be assigned as the “typical” trajectory.
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Starting from all trajectories belonging to the same clus-
ter, we estimated their similarity via the pair-wise Fréchet
distance matrix. Among all trajectories, it is always possible
to find a trajectory which gives the minimum value of the
sum of the Fréchet distances between this selected trajectory
and all other trajectories. In this situation, we can assign this
trajectory as the “typical” or “representative” one that char-
acterizes the important geometrical evolution of this group of
trajectories.

C. Coding issues

In this work, the dynamics simulation was performed
within the developing version of the JADE package,46,47,136

which contains a module to interface with several quan-
tum chemistry packages (including the interface with the
MNDO package134). A simple homemade FORTRAN code
was developed to calculate the RMSD between two geome-
tries.95 Most analysis scripts were written with Python lan-
guage, and the Scikit-learn Python toolkit137,138 was used for
the data analysis, such as the DBSCAN clustering.

III. RESULTS
A. Clustering analysis of trajectory
similarity before S1-S0 hops

In the analysis of the nonadiabatic dynamics of photoiso-
merization, an important task is to understand the excited-state
dynamics before the S1-S0 decay. Thus, we cut the trajectories
until their hops, defined the pair-wise distance matrix among
all trajectories by invoking the Fréchet distance calculations,
used the dimensionality reduction approach by the MDS, and
performed the trajectory clustering analysis with DBSCAN
methods. Two clusters appear clearly [Fig. 2(a)], which are
labeled as cluster A and cluster B.

Cluster A contains 142 trajectories and cluster B contains
303 trajectories, while a few trajectories (∼2.8%) were ignored
according to the noise reduction principle of the DBSCAN
algorithm. Although only two clusters exist, it is necessary to
check whether each cluster can be divided again. For this pur-
pose, at the second step, we took all trajectories belonging to
cluster A, defined the pair-wise Fréchet distance matrix, and
performed the dimensionality reduction approach and the tra-
jectory clustering analysis again. Figure 2(b) shows that it is
not possible to divide cluster A into small groups. The same
operation on cluster B was performed and the results are given
in Fig. 2(c). We wish to point out that at each step, different
reduced spaces are formed because different distance matrixes
were employed in the MDS analysis. When each cluster could
not be divided anymore after several iterative steps of trajec-
tory clustering analysis, two clusters are finally obtained. In
principle, this indicates that two nonadiabatic decay channels
may be involved. The next task is to check the trajectory fea-
ture of each group and to understand the dynamical evolution
in each channel.

1. Geometrical evolution of trajectories
belonging to cluster A

To get the geometrical features of trajectories belong-
ing to cluster A, we first collected all trajectories belonging

FIG. 2. The clustering analysis of trajectory similarity before S1-S0 hops.
(a) In the first run, we simply collected all trajectories, defined the pair-wise
distance matrix for all trajectories, employed the dimensionality reduction
approach, and performed the clustering analysis. Two clusters appear, labeled
as cluster A and cluster B. (b) In the second run, we took all trajectories
belonging to cluster A and repeated the above analysis as the first step.
(c) The similarity analysis was also performed for trajectories belonging to
cluster B.

to such clusters. The snapshot was taken before the hopping
events, and totally 2827 geometries were collected to form a
dataset.

This classical MDS analysis of the pair-wise distance
matrix among all collected geometries gives a clear distri-
bution pattern in the low-dimensional space spanned by two
reduced coordinates, as shown in Fig. 3(a), in which each
point represents a geometry snapshot. It is obvious that the
snapshots evolve from the Franck-Condon (FC) region to the
S1-S0 conical intersection region, corresponding to the chang-
ing of RCI values from ∼−0.1 to ∼0.2, as shown in Fig. 3(b).
We selected three representative local domains along the RCI
axis and stacked all snapshots in each selected domain. It
turns out that the RCI was governed by the torsional angle
at the C10-C11 bond, namely, τ10 11, as shown in Figs. 3(c)
and 3(d). Overall, the torsional motion of τ10 11 is observed
and the hops take place near the S0-S1 conical intersec-
tion region with τ10 11 ∼ 70◦-90◦, as shown in Figs. 3(b)
and 3(d).

2. Geometrical evolution of trajectories
belonging to cluster B

Similar analysis was also performed for cluster B. We
totally collected 6379 geometries for MDS analysis. As shown
in Fig. 4(a), the dominant reaction coordinates of the trajecto-
ries in cluster B can also be represented by a one-dimensional
reduced coordinate (RCI); see Fig. 4(b). The torsional motion
at the C9-C10 bond (τ9 10) is responsible for RCI, as shown
in Figs. 4(c) and 4(d). This indicates that the strong torsional
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FIG. 3. Classical MDS analysis of the
geometrical evolution for the trajec-
tories belonging to cluster A. (a)
Locations of sampled geometries in the
low-dimensional space spanned by two
leading reduced coordinates RCI and
RCII. Colour codes indicate the time
evolution. (b) Locations of the initial
geometries and the hopping geometries
in the two-dimensional reduced space.
(c) Geometrical aggregations in three
representative local domains. (d) The
values of τ10 11 vs RCI.

motion τ9 10 takes place in the excited-state decay pathway
towards conical intersections.

In the above protocol, two clusters are formed in the clus-
tering analysis of the trajectory similarity, and the further MDS
analysis of the geometry similarity shows that each cluster cor-
responds to a single reaction channel. It is obvious that cluster
A is relevant to the torsional motion along τ10 11 while cluster
B is governed by the torsional motion of τ9 10. The above
detailed analysis gives a clear description of the dynamics
process from the initial sampling to two S1-S0 intersection
regions. These observations are consistent with our previous
studies.70

If we wish to get a full dynamical picture of photoin-
duced reactions, it is also important to know photoproducts.
We repeated the above analyses of trajectory similarity and
geometry similarity again, while this time all trajectories
stop at 1 ps. For all trajectories belonging to either cluster
A or B, we computed the trajectory similarity and perform
the clustering analysis again, while the ground-state dynam-
ics after the internal conversion is also included. This way

clearly shows that the trajectories of cluster A (or B) can be
distinguished by their different photoproducts. Because the
analysis procedures of cluster A and B are very similar, we
tried to mainly focus on the analysis of cluster B containing
more trajectories in the below discussion. To avoid redun-
dancy, we gave the main results relevant to cluster A in the
Appendix, Subsection 4.

B. Clustering analysis of trajectory similarity
with the inclusion of photoproducts

After the inclusion of the ground state dynamics, clus-
ter B is divided into two sub-clusters as shown in Fig. 5(a),
which are labeled as clusters B1 and B2. Cluster B1 con-
tains 191 trajectories, while cluster B2 contains 106 trajec-
tories, while a few trajectories are treated as noise in the
DBSCAN algorithm. The second round of trajectories’ clus-
tering results as shown in Figs. 5(b) and 5(c) proves that
these two sub-clusters cannot be divided anymore. The appear-
ance of two clusters, B1 and B2, indicates that two different

FIG. 4. Classical MDS analysis of the
geometrical evolution for the trajec-
tories belonging to cluster B. (a)
Locations of sampled geometries in the
low-dimensional space spanned by two
leading reduced coordinates RCI and
RCII. Colour codes indicate the time
evolution. (b) Locations of the initial
geometries and the hopping geometries
in the two-dimensional reduced space.
(c) Geometrical aggregations in three
representative local domains. (d) The
values of τ9 10 vs RCI.
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FIG. 5. The further clustering analysis of all trajectories belonging to cluster
B when the propagation lasts up to 1 ps. (a) In the first run, we collected all
trajectories in cluster B, defined their pair-wise distance matrix, employed the
dimensionality reduction approach, and performed the trajectory clustering
analysis. Two clusters appear, labeled as cluster B1 and cluster B2. (b) In the
second run, we took all trajectories belonging to cluster B1 and repeated the
above analysis as the first step. (c) The similar analysis was performed for
trajectories belonging to cluster B2. The blue dots in (b) and (c) represent the
typical trajectories of each cluster.

products are formed for the trajectories passing the same
conical intersection.

1. Geometrical evolution of trajectories
belonging to cluster B1

For all trajectories in cluster B1, we checked their geo-
metrical evolutions by the analysis of the geometry similarity.
We took a snapshot at every 40 fs for each trajectory belonging
to cluster B1, and 4775 geometries were collected.

The classical MDS analysis of the geometry similarity
over the trajectories belonging to cluster B1 gives a very inter-
esting distribution pattern in the low-dimensional space shown

in Fig. 6(a). Before ∼500 fs, the first two leading dimensions
control the propagations. After ∼500 fs, the third reduced
coordinate starts to play an important role. We also show the
data distribution and evolution in the two-dimensional reduced
space in Fig. 6(b). Starting from the FC region (RCI ∼ 0.15
and RCII ∼ −0.15), the whole propagation seems to follow
a circle. We selected three key blocks (I, II, and III) in the
representative regions (FC region, hopping region, and photo-
product region) and aggregate all the snapshots in each block,
shown in Fig. 6(c).

From block I to block II, the τ9 10 twisting angle clearly
experiences rotational motion accompanied by the weak tor-
sional motion along τ5 6. From block II to block III, both
τ9 10 and τ5 6 angles return to the initial values while the
“hot” geometries appear due to excessive energies. The large-
amplitude vibrational motions not only include the τ9 10 and
τ5 6 torsions but also the vibrations of other coordinates such
as the deformation of the side vinyl group. This explains that
the third reduced coordinate RCIII is involved after the system
goes back to the ground state. Also due to the same reason, the
data ensemble does not seem to finally go back to the starting
region, while all photoproduct geometries look very similar to
the initial reactant ones.

To confirm the above analysis results, we gave the time-
dependent distribution diagram of the τ9 10, τ5 6, and τvinyl

group in Figs. 7(a)–7(c), respectively. Before 300 fs, the strong
torsional motion of τ9 10 is observed, accompanied with the
weak change of τ5 6. This observation is consistent with our
previous theoretical results.70 From 300 fs to 500 fs, both tor-
sional angles return back to the initial configurations. After
500 fs, both τ9 10 and τ5 6 show the rather board distributions,
also indicating their large-amplitude vibrational motions. The
deformation of the side vinyl group starts to be very impor-
tant after 400 fs, reflected by the evolution of τvinyl. Most
importantly, such motion is highly excited because the dis-
tribution of τvinyl covers a very board angular range. Overall,
we can still assign cluster B1 to be the channel, in which
the system assesses the conical intersection by the strong
τ9 10 torsional motion and the weak τ5 6 torsional motion,
and then trajectories go back to the reactant region, if we
only consider the backbone motion and neglect the side-chain
motion.

FIG. 6. Classical MDS analysis of the
geometrical evolution for the trajec-
tories belonging to cluster B1. (a)
Locations of sampled geometries in
the low-dimensional space spanned by
three leading reduced coordinates and
colour codes indicate the time. (b)
Locations of sampled geometries in
the low-dimensional space spanned by
two leading reduced coordinates and
three representative blocks. (c) Geomet-
rical aggregations in three representa-
tive locations.
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FIG. 7. Time-dependent distribution diagram of three key coordinates for the trajectories belonging to cluster B1. In the colour bar, 0 means the minimum
value while 1 means the maximum value. (a) Distribution of τ5 6 vs time. (b) Distribution of τ9 10 vs time. (c) Distribution of torsion of vinyl group (τvinyl) vs
time.

2. Geometrical evolution of trajectories
belonging to cluster B2

Cluster B2 contains 106 trajectories, which are examined
by the same analysis protocol (based on 2650 geometries), as
used in cluster B1.

Compared to cluster B1, the geometrical evolution of
trajectories belonging to cluster B2 has a very clear prop-
agation pattern, as seen in Figs. 8(a) and 8(b), both in a
three-dimensional space and a two-dimensional space. Before
600 fs, the propagation is dominated by the first two key coor-
dinates RCI and RCII. After that, the third dimension RCIII
starts to be involved. In the two-dimensional space spanned
by RCI and RCII, as shown in Fig. 8(b), the geometry evo-
lution basically follows a semi-circle, starting from the FC
region. Then, we selected four representational blocks (I, II,
III, and IV) to examine the features of the geometry evolution
in Fig. 8(c). From block I (close to the FC region) to block II,
τ9 10 increases from ∼0◦ to ∼90◦, accompanied by the change
of τ5 6. From block II to block III, the τ9 10 tends to be ∼180◦

while the τ5 6 returns to the initial values. In the later stage,
τ14 15 starts to play roles from block III to block IV. At the
same time, we also observe the large distribution of the τvinyl

angle.
We made the time-dependent distribution diagram of the

four key torsion angles (τ5 6, τ9 10, τ14 15, and τvinyl) as shown
in Fig. 9. It is almost the same with our discussion on the
geometry evolution. The τ9 10 angle goes from∼0◦ to∼90◦ and
then continuously moves to ∼180◦ to give the photoproducts
before 500 fs. The τ5 6 angle also displays the visible changes

and then returns in the dynamics. Please notice that the τ14 15

angle may also show some torsional motion. However, such
motion starts to take place only on the ground-state dynamics,
even after the final products are almost formed, and the τ14 15

angle quickly goes back to the initial configuration, as shown
in Figs. 9(b) and 9(c). Thus, it is safe to believe that this angle
is not relevant to the current analysis and no other isomer is
formed by such motion. Similar to the cases in cluster B1, we
observe the large amplitude motion of the side vinyl group
in Fig. 9(d). Overall, cluster B2 corresponds to the channel
in which the system assesses the conical intersection by the
τ9 10 torsional motion and the weak τ5 6 torsional motion, and
then trajectories move towards the photoproducts with τ9 10 ∼

160◦–180◦.

3. Typical trajectory

In the above analysis, we clearly demonstrated that it is
possible to divide all trajectories into different clusters, while
each cluster represents a reaction channel. In this situation,
we can define the “typical trajectory” in each cluster. For
cluster B1 and cluster B2, their typical trajectories are given
in Figs. 10(a1)–10(c1) and 10(a2)–10(c2), respectively. For
illustration, we show a few important key coordinates vs time
and give the evolution of other coordinates in the Appendix,
Subsection 5. As shown in Figs. 10(a1)–10(c1), in the typi-
cal trajectory that represents the evolution of cluster B1, τ9 10

increases from ∼0◦ to ∼100◦ and then returns to ∼0◦ during
the dynamics. At 487 fs, the hop takes place with τ9 10 ∼ 90◦

in the vicinity of the conical intersection seam. It is also clear

FIG. 8. Classical MDS analysis of
the geometrical evolution for the tra-
jectories belonging to cluster B2.
(a) Locations of sampled geometries
in the low-dimensional space spanned
by three leading reduced coordinates
and colour codes indicate the time. (b)
Locations of sampled geometries in the
low-dimensional space spanned by two
leading reduced coordinates and four
representative blocks. (c) Geometrical
aggregations in four representative loca-
tions.
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FIG. 9. Time-dependent distribution
diagram of four key coordinates for
the trajectories belonging to cluster
B2. In the colour bar, 0 means the
minimum value while 1 means the
maximum value. (a) Distribution of
τ5 6 vs time. (b) Distribution of τ9 10 vs
time. (c) Distribution of τ14 15 vs time.
(d) Distribution of τvinyl vs time.

that the C9-C10 distance becomes longer in the early state of
dynamics. All these features, including the time scale and the
geometry evolution, are consistent with the above discussions.

This strongly implies that a reasonable “representative” trajec-
tory is selected. The same way can also be applied to select
the typical trajectory for cluster B2; see Figs. 10(a2)–10(c2).

FIG. 10. Geometrical evolution in typical trajectories for clusters B1 and B2. The time-dependent torsional angle τ9 10, bond distance d9 10, and hopping
geometries of the typical trajectory in the B1 cluster are given in (a1), (b1), and (c1), respectively. The corresponding results in the B2 cluster are shown in (a2),
(b2), and (c2), respectively. The vertical green lines represent the hopping events.
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C. Photoisomerization mechanism, reaction
channels, and branching ratio

Up to now, we employed the clustering analysis on the
trajectory similarity to distinguish different channels in the
nonadiabatic dynamics of the PΦB multi-channel photoiso-
merization. The configurational similarity analysis further
gives us the geometrical evolution feature of each channel.
Most interestingly, the trajectory clustering analysis auto-
matically provides a way to define the so-called typical
trajectory.

Starting from the FC region, all trajectories are first
grouped into two clusters, A and B, with the branching ratio
around 0.31:0.66 (A:B). Then each cluster is divided again
according to their final products. At the end, four clusters are
given, which are A1, A2, B1, and B2 with branching ratio
0.16:0.15:0.42:0.23. The sum of the total probability is not
an exact 1 because some trajectories are neglected in cluster-
ing analysis. Clearly each cluster corresponds to a different
reaction channel.

For cluster A1, the system tends to follow the tor-
sional motion along τ10 11, performs the S1-S0 hops with
τ10 11 ∼ 70◦-90◦ near conical intersection, and then returns
to reactants. Although some vibrational motions, such as the
geometrical deformation of the side vinyl group, are excited,
we still can attribute that this channel finally gives the reac-
tants by checking the backbone motion. For cluster A2, the
torsional motion of τ10 11 is also responsible for the excited-
state dynamics towards the conical intersections. After internal
conversion, the trajectories tend to move forwards and to give
the photoproducts with τ10 11 ∼ 160◦-180◦.

For cluster B, the system moves towards the conical inter-
section along the τ9 10 torsional motion. After hopping back
to the ground state, the trajectories belonging to cluster B1
return to the reactants, while trajectories belonging to cluster
B2 continuously move to the photoproducts.

After all trajectories are clearly assigned into differ-
ent clusters, we plot the important geometrical features in a
few key events in the trajectory evolution associating with
each cluster. For example, for each cluster, A1, A2, B1, and
B2, we show their hopping geometries and final products in
Fig. 11. Each cluster defines a reaction channel. This means
that the current analysis can successively distinguish differ-
ent reaction channels. Overall, all current results on the PΦB

FIG. 11. The branching ratios towards different channels in the TSH simula-
tion of the PΦB’s photoisomerization.

photoisomerization are highly consistent with our previous
studies.70

IV. DISCUSSIONS

Here we emphasize again why we develop the novel anal-
ysis tool of the on-the-fly trajectory surface hopping dynamics.
In the straightforward way to examine the on-the-fly TSH
nonadiabatic dynamics, the evolution of each trajectory is
examined one after another by eye view. It is also necessary
to plot the hopping geometries, the final products, and the
time-dependent evolution of relevant internal coordinates to
perform a meaningful analysis. Some preliminary knowledge
on the possible reaction pathways and active coordinates is also
necessary for the analysis task. Thus, when a large number of
trajectories are employed, the analysis task becomes tedious
even under the help of computational scripts. In addition, it is
not enough to employ the so-called “typical trajectory” to per-
form the analysis because it is not trivial to define the typical
trajectory over a huge number of trajectories. When the sys-
tem becomes complex, it is also not so easy to obtain the active
molecular motion responsible for the nonadiabatic dynamics.
Thus, some novel analysis tools should be developed, which
allows us to understand the trajectory surface hopping results
based on a large number of trajectories. Recently, Tully also
pointed out a similar idea.139 The current analysis approach
automatically finds the reaction channels and branching ratio
by the trajectory clustering analysis based on trajectory simi-
larity. Then for each cluster, it is rather easy to extract the major
geometry evolution responsible for the corresponding reaction
channel.

It is also possible to perform the geometry similarity anal-
ysis in the configurational space directly, as shown in our
previous studies.95–100 However, the current analysis based
on both the trajectory similarity and the geometry similarity
is somehow more powerful due to several reasons. First the
dimensionality reduction approaches purely based on geome-
try similarity basically give a few of leading coordinates. This
may not work well in the multi-channel situations. In the cur-
rent approach, each cluster corresponds to a single reaction
channel; thus, all trajectories belonging to such a cluster expe-
riences a similar molecular motion. In this case, it is easier
to get meaningful results because it is possible to perform the
dimensionality reduction analysis for each single channel. This
explains why sometimes a single reduced coordinate (even
derived from the linear dimensionality reduction algorithm)
may be good enough for the analysis of the geometry evolution.
Second when a large number of trajectories are involved, the
dimensionality reduction purely based on the geometry simi-
larity requires the linear algebra operations on the extremely
huge pair-wise dissimilarity matrix formed by a large num-
ber of geometries. This task may become very challenging
because the calculation may require an extremely huge amount
of computer memory to store and treat the very huge matri-
ces. The current approach, on the other hand, requires smaller
computer memory in the estimation of the trajectory similarity,
although the total computational time should be slightly longer.
When each cluster is identified, we only need to perform the
dimensionality reduction analysis based on all trajectories
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belonging to the single cluster. Because the much smaller pair-
wise dissimilarity matrix is considered in the dimensionality
reduction approaches, the memory issue is largely alleviated.
Third, we can also easily find the so-called “representative”
trajectory for each channel from the current analysis. Over-
all, the current proposed analysis protocol is more powerful to
analyze the multi-channel nonadiabatic dynamics.

In this work, we performed the trajectory clustering
analysis in the two-step manner, namely, first checking the
responsible conical intersection and second examining the
final products. In principle, it is always recommended to exam-
ine the excited-state dynamics before hops because it is very
important to understand the reaction channels of the excited-
state dynamics and relevant conical intersections in the anal-
ysis of multi-channel nonadiabatic dynamics. In some cases,
after the internal conversion, the system may become highly
vibrationally excited and the “hot” ground-state dynamics may
not be very relevant to the nonadiabatic dynamics. In this case,
only the first step in the current analysis protocol is neces-
sary. Although it is possible to plot the hopping geometries
in the examination of the reaction channels, the current anal-
ysis displays many advantages, for instance, taking the time
evolution into account directly and giving us the representa-
tive trajectory for each channel. In addition, the excited-state
motion is normally driven by a few of reactive coordinates in a
single channel in the ultrafast nonadiabatic dynamics and the
Fréchet distance may well capture the main geometrical evo-
lution. By contrast, sometimes the hot motion on the ground
state may create many highly distorted snapshots even if the
ground-state dynamics may follow some common pathways.
In this case, the distance between two trajectories may be deter-
mined by these highly distorted geometries, instead of their
different reaction channels via different conical intersections.
Thus, it is more transparent to first check the relevant conical
intersections and then the final products in more general cases.

V. CONCLUSION

We propose a powerful approach to analyze the TSH
simulation results of the multi-channel nonadiabatic photoi-
somerization dynamics by considering both the trajectory
similarity and the geometry similarity. In this approach, the
clustering analysis of the trajectory similarity is first employed
to find how many reaction channels are involved, while the
active reaction coordinates responsible for each channel are
then identified by the geometry similarity analysis in the con-
figuration space without the requirement of the pre-known
knowledge.

In practice, the analysis protocol starts from many
trajectories obtained from TSH simulation. The trajectory
similarity is estimated by their Fréchet distance. After the pair-
wise Fréchet distance matrix was built for all trajectories, the
DBSCAN clustering analysis is performed to assign trajecto-
ries into different groups. When each group cannot be divided
any more, all trajectories belonging to the single non-separable
cluster in principle are governed by the same individual
reaction channel. To identify the major geometrical evolution
feature in each reaction channel, we collect the geometries
from the trajectories belonging to the same cluster and compute

their pair-wise dissimilarity matrix. Then the MDS dimen-
sionality reduction approach is performed to extract the major
coordinates responsible for each channel. As a side product,
it is very easy to find the so-called “representative” trajectory
from this analysis protocol.

The multi-channel PΦB photoisomerization dynamics is
used to explain this novel approach in this work. We first
consider the excited-state dynamics and set the cutoff of tra-
jectory propagation at hops. The clustering analysis of the
trajectory similarity shows that two clusters are formed, which
correspond to two decay channels via their individual conical
intersections. In the second step, we start from each cluster,
take the photoreaction products into account, and perform the
same analysis again. At this step, we notice that the single clus-
ter, obtained at the first step, can be divided into two clusters
again. This means that after passing the same conical intersec-
tion, the trajectories may go forwards to form the photoproduct
or return to the reactant. Totally, four groups of trajectories can
be clearly identified and each of them corresponds to a reaction
channel. For all four reaction channels, it is possible to extract
the active torsional motion and find the typical trajectory. All
these results are consistent with our previous studies.70

This work demonstrates that the current analysis protocol
can extract the main features of multi-channel nonadiabatic
photoisomerization dynamics, such as the reaction channels,
the branching ratio, and relevant molecular motions, in a
more automatic and intelligent way. This analysis approach
should be very powerful, which can also be employed in other
trajectory-based dynamics approaches.11,17,23,33 The current
work only focuses on the photoisomerization, while, in prin-
ciple, the same approach can also be employed to treat more
general types of nonadiabatic dynamics.33,41,68 In more real-
istic cases, this analysis task may face additional problems,
such as the trajectory clustering analysis may not give the
clearly distinguishable cluster structure or the estimation of
geometry similarity may require more advanced molecular
descriptors.140–142 In addition, we also fully know that the dis-
tance between two trajectories is only a rather approximated
approach. It is also necessary to check different ways to define
such similarity by using other distance measurement. All these
tasks represent interesting challenging topics in future.
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APPENDIX: ADDITIONAL DISCUSSIONS ON METHOD
DETAILS AND SUPPORTING FIGURES
1. Geometry alignment

The geometry alignment is important to form the correct
metricity in the measurement of the Fréchet distance during
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FIG. 12. Situation in which the distance between two trajectories (P and
Q) is described correctly by the Fréchet distance, not by the Hausdorff
distance.

the trajectory clustering procedure. Let us assume that we have
three points, A, B and C, and their distances are AB, BC, and
CA. The correct metricity requires

AB > 0, (A1)

AB = 0⇔ A = B, (A2)

AB = BA, (A3)

AB + BC > AC. (A4)

Previous discussions figured out that it is necessary to
select a single suitable reference structure to align all geome-
tries,135 instead of performing the pair-wise alignment way. In
this work, we chose the ground state minimum as reference to
perform the alignment of all snapshots universally.

The key point is how to define the distance between two
snapshots. Normally it is possible to define their distance by
using their RMSD in the Cartesian coordinate, while the contri-
bution of translational and rotational motions must be removed
in the alignment procedure. For this purpose, we moved the
selected geometry in the translational and rotational ways, and
the relevant matrix transformation is determined by the mini-
mization of the RMSD between two geometries. The treatment
of the translation motion is rather trivial, while the removing
of the rotational motion follows the algorithm proposed in the
previous studies.125,126

FIG. 13. The definition of the Fréchet distance in a sample model.

FIG. 14. The pseudocode for the Fréchet distance calculation, where
dis matrix denotes the Dsnap matrix.

2. Trajectory similarity

There are several ways to define “distance” between dif-
ferent trajectories. For example, it is possible to define the
Euclidian distance between two trajectories, while such dis-
tance requires that two trajectories have the same number of the
points. In addition, only when two trajectories pass the similar
points at the same time during the whole trajectory propaga-
tion, they are similar in the Euclidian distance measurement.
Thus, this is not suitable for the current analysis purpose.

Hausdorff distance and Fréchet distance are two popular
choices to define the “similarity” of two trajectories. It is well
known that the Hausdorff distance would face problems in the

FIG. 15. The further clustering analysis of all trajectories belonging to cluster
A when the propagation lasts up to 1 ps. (a) In the first run, we collected all
trajectories in cluster A, defined their pair-wise distance matrix, employed the
dimensionality reduction approach, and performed the trajectory clustering
analysis. Two clusters appear, labeled as cluster A1 and cluster A2. (b) In
the second run, we took all trajectories belonging to cluster A1, defined the
pair-wise distance matrix, employed the dimensionality reduction approach,
and performed the trajectory clustering analysis. (c) A similar analysis was
performed for trajectories belonging to cluster A2.
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FIG. 16. Classical MDS analysis of the nonadiabatic dynamics results of the
trajectories belonging to cluster A1. (a) Locations of sampled geometries in
the low-dimensional space spanned by two leading reduced coordinates and
four representative blocks. (b) Geometrical aggregations in four representative
locations.

situation shown Fig. 12. The evolution of two trajectories (P
and Q) is quite different, while their Haussdoff distance is very
small. However, the Fréchet distance can distinguish these two
trajectories which stay in the similar coordinate space region
while their evolutions are different. So, in the current work, we
choose the Fréchet distance to define the “similarity” of two
trajectories.

3. The definition of the discrete Fréchet distance

We take the below simple model to explain the definition
of the Fréchet distance. As shown in Fig. 13, we have two
trajectories P and Q, which are represented by discrete points
{Pi} and {Qj}. Then it is possible to use a different way to link
the geometry points in each trajectory; see Fig. 13.

For each connectivity way (labeled as D(k)), it is possible
to find the largest distance (labeled as D(k)

max) between all
connections. Then the smallest value of all D(k)

max (for all k)
finally gives the Fréchet distance.

Previous work demonstrated that it is possible to use the
dynamical programming algorithm to calculate the Fréchet
distance; see Refs. 108, 112, 114, and 143. Imagine we have
m snapshots in the P trajectory and n snapshots in the Q trajec-
tory, and it is easy to get an m-times-n pairwise distance matrix
Dsnap between all geometries. Then the Fréchet distance can
be calculated by the pseudocode; see Fig. 14.

FIG. 17. Classical MDS analysis of the nonadiabatic dynamics results of the
trajectories belonging to cluster A2. (a) Locations of sampled geometries in
the low-dimensional space spanned by two leading reduced coordinates and
four representative blocks. (b) Geometrical aggregations in four representative
locations.

4. Trajectory similarity in cluster A

We checked the trajectory similarity in cluster A, and
the results are shown in Fig. 15. Next, we collect trajectories
belonging to the A1 and A2 clusters individually, examine
the geometry evolution, and give the results in Figs. 16
and 17.

FIG. 18. The propagation of seven key torsion angles vs time in the typical
trajectories in clusters B1 and B2. Please notice that τ14 15 may also show
some torsional motion. However, such motion starts to take place only on the
ground-state dynamics, even after the final products are almost formed. In
addition, the angle τ14 15 quickly goes back to the initial configuration. Thus,
it is safe to believe that this angle is not relevant to the current analysis and
no other isomer is formed by such motion.
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FIG. 19. The propagation of six key bond distances vs
time in the typical trajectories in clusters B1 and B2.

5. Geometrical evolution of typical trajectory

For clusters B1 and B2, we locate the typical trajectories.
The evolutions of the key internal coordinates are given in
Figs. 18 and 19.
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N. Michael, T. Lamparter, L.-O. Essen, J. Hughes, W. Gärtner, Y. Yang,
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124P. Altoè, T. Climent, G. C. De Fusco, M. Stenta, A. Bottoni, L. Serrano-

Andrés, M. Merchán, G. Orlandi, and M. Garavelli, J. Phys. Chem. B
113(45), 15067–15073 (2009).

125W. Kabsch, Acta Crystallogr., Sect. A 34(5), 827–828 (1978).
126W. Kabsch, Acta Crystallogr., Sect. A 32(5), 922–923 (1976).
127J. D. Mazimpaka and S. Timpf, J. Spat. Inf. Sci. 2016(13), 61–99.
128N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein,

J. Comput. Chem. 32(10), 2319–2327 (2011).
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(2013).
143E. Sriraghavendra, K. Karthik, and C. Bhattacharyya, International Con-

ference on Document Analysis and Recognition (IEEE, 2007), pp. 461–465.

https://doi.org/10.1126/science.1127647
https://doi.org/10.1073/pnas.0603553103
https://doi.org/10.1073/pnas.0603553103
https://doi.org/10.1073/pnas.1108486108
https://doi.org/10.1146/annurev-physchem-040412-110006
https://doi.org/10.1063/1.3569857
https://doi.org/10.1063/1.3569857
https://doi.org/10.1063/1.3575245
https://doi.org/10.1063/1.3575245
https://doi.org/10.1073/pnas.1201152109
https://doi.org/10.1021/acs.jctc.6b00800
https://doi.org/10.1021/acs.jctc.7b01045
https://doi.org/10.1021/acs.jctc.7b00394
https://doi.org/10.1021/acs.jctc.7b01155
https://doi.org/10.1063/1.4742066
https://doi.org/10.1063/1.4913962
https://doi.org/10.1039/c7cp00436b
https://doi.org/10.1039/c7cp00436b
https://doi.org/10.1021/acs.jpclett.7b01479
https://doi.org/10.1007/978-3-662-47672-7_81
https://doi.org/10.1109/tits.2016.2547641
https://doi.org/10.1109/tits.2016.2547641
https://doi.org/10.1007/s00454-002-2886-1
https://doi.org/10.1021/acs.jctc.6b00212
https://doi.org/10.1063/1.4931654
https://doi.org/10.1063/1.4934356
https://doi.org/10.1063/1.4798458
https://doi.org/10.1371/journal.pcbi.1004568
https://doi.org/10.1371/journal.pcbi.1004568
https://doi.org/10.1145/2782759.2782767
https://doi.org/10.1007/s10462-016-9477-7
http://arxiv.org/abs/1802.06971
https://doi.org/10.1142/s0218195995000064
https://doi.org/10.1142/s0219720008003278
https://doi.org/10.1021/ja043959l
https://doi.org/10.1021/bi990688w
https://doi.org/10.1021/bi991688z
https://doi.org/10.1529/biophysj.107.108092
https://doi.org/10.1016/j.cplett.2005.05.040
https://doi.org/10.1016/j.cplett.2005.05.040
https://doi.org/10.3389/fmolb.2015.00037
https://doi.org/10.1016/j.cplett.2005.09.050
https://doi.org/10.1039/b605682b
https://doi.org/10.1039/b811813b
https://doi.org/10.1021/jp904669x
https://doi.org/10.1107/s0567739478001680
https://doi.org/10.1107/s0567739476001873
https://doi.org/10.5311/Josis.2016.13.263
https://doi.org/10.1002/jcc.21787
https://doi.org/10.1002/widm.30
https://doi.org/10.1002/widm.30
https://doi.org/10.1007/s00214-007-0331-5
https://doi.org/10.1002/jcc.10210
https://doi.org/10.1007/s002149900083
https://www.mdanalysis.org/docs/documentation_pages/analysis/psa.html
https://www.mdanalysis.org/docs/documentation_pages/analysis/psa.html
https://doi.org/10.1039/c7cp01732d
https://doi.org/10.1039/c7cp01732d
http://arxiv.org/abs/1309.0238
http://www.jmlr.org/papers/v12/pedregosa11a.html
http://www.jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1063/1.4757762
https://doi.org/10.1103/physrevlett.98.146401
https://doi.org/10.1103/physrevlett.120.143001
https://doi.org/10.1103/physrevb.87.184115

