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ABSTRACT: On-the-fly trajectory-based nonadiabatic dynamics
simulation has become an important approach to study ultrafast
photochemical and photophysical processes in recent years.
Because a large number of trajectories are generated from the
dynamics simulation of polyatomic molecular systems with many
degrees of freedom, the analysis of simulation results often suffers \ i

from the large amount of high-dimensional data. It is very /“\\‘_
challenging but meaningful to find dominating active coordinates %L;/,Ifg?nel C,-slop P Ing ISOMAP

Cf&»:is:cal MDS

Hadon g,

from very complicated molecular motions. Dimensionality
reduction techniques provide ideal tools to realize this purpose.
We apply two dimensionality reduction approaches (classical multidimensional scaling and isometric feature mapping) to analyze
the results of the on-the-fly surface-hopping nonadiabatic dynamics simulation. Two representative model systems, CH,NH,"
and the phytochromobilin chromophore model, are chosen to examine the performance of these dimensionality reduction
approaches. The results show that these approaches are very promising, because they can extract the major molecular motion
from complicated time-dependent molecular evolution without preknown knowledge.

1. INTRODUCTION ping (TSH),"*™ quantum classical Liouville equation,”*>’
quasiclassical or semiclassical dynamics with mapping
model,**™*" ab initio multiple spawning (AIMS),** variational
multiconfiguration Gaussian (VMCG),*” and other ap-
proaches.** ™" The direct combination of trajectory-based
methods and electronic-structure calculations allows us to
propagate trajectory in the manner of on-the-
fly.'! 7197224248753 Thig opens a possible way to simulate the
full-dimensional nonadiabatic dynamics of complex realistic

Nonadiabatic dynamics plays an essential role in photophysics
and photochemistry.' > The simulation of nonadiabatic
dynamics is not a trivial task because of the breakdown of the
Born—Oppenheimer approximation.” Within the framework of
quantum dynamics, several theoretical methods were proposed
to simulate nonadiabatic dynamics, including standard quantum
dynamics,” the multiconfiguration time-dependent Hartree
method (MCTDH),” multilayer multiconfiguration time- i
dependent hartree method (ML-MCTDH),’ and quantum systems at the atomic level. )

dissipative dynamics™” based on density operator. However, it NAormally, the tra]ectory—bas.ed @ethods require the prop-
is only possible to use these methods to treat the nonadiabatic agation of a large number of trajectories and the average of these
dynamics of small molecular systems, model systems with trajectories gives the molecular evolution in the nonadiabatic
reduced dimension, or the simplified Hamiltonian with specific dynamics. Beside the time-dependent electronic population, the
forms, such as spin-boson or linear vibronic coupling models. To characterization of nonadiabatic dynamics also requires the
solve the nonadiabatic dynamics of complex systems, great analysis of other simulation results, for instance the geometrical

efforts were also made to develop trajectory-based and Gaussian- evolution with respect to time, geometrical features associated
wavepacket-based dynamical methods within the frameworks of with nonadiabatic transitions near potential energy crossings and
mixed quantum-classical and semiclassical approaches, such as
Ehrenfest dynamics and its variation,®™"® ab initio multi- Received: April 13, 2017
configurational Ehrenfest (AI-MCE),"* trajectory surface hop- Published: September 1, 2017
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the evolution of electronic characters. Such analysis provides the
direct understanding of active reaction coordinates responsible
for nonadiabatic decay. In the analysis of on-the-fly TSH, a very
simply way is to pick up a few “typical” trajectories representing
the characteristic features in dynamics evolution. This widely
used protocol provides a direct view of the time-dependent
geometrical evolution by eye view. By comparing the initial
geometries and hopping geometries, we easily identify reaction
coordinates. It is also possible to plot several internal coordinates
vs time and to find important ones. However, this approach faces
two challenging issues. (1) How to select the “representative”
trajectory and how to characterize the overall trajectory
distribution in the high-dimensional coordinate space? (2)
How to find a suitable way to characterize reactive coordinates if
many internal molecular coordinates are involved in non-
adiabatic dynamics? The answer to the first question seems not
difficult, because we may simply plot the time-dependent
distribution of involved internal coordinates based on many
trajectories instead of only a few. However, the answer to the
second problem is not straightforward, because many nuclear
degrees of freedom may strongly mix in the nonadiabatic decay.
Overall, as pointed out recently by Tully, the analysis of
trajectory-based nonadiabatic molecular dynamics represents a
great challenge.”*

In the mathematical view, a single geometry snapshot is
represented by a point in a high-dimensional coordinate space,
which is characterized by a high-dimensional vector. The overall
geometry evolution in the propagation of many trajectories
corresponds to the motion of a swarm of points (or a density
distribution) in this high-dimensional space. Thus, the
identification of reactive coordinates responsible for the
nonadiabatic dynamics is equivalent to the construction of the
effective moving pathways in the high-dimensional space.
Possibly, these pathways may lie within a low-dimensional
reduced subspace embedded in the original high-dimensional full
space. This view allows us to consider the identification of active
coordinates in nonadiabatic dynamics as a so-called “dimension-
ality reduction” task.” In the last decades, many linear and
nonlinear dimensionality reduction methods were proposed in
the research field of machine learning (ML), which includes
principal component analysis (PCA),**"** multidimensional
scaling (MDS),SQ_61 isometric feature mapping (ISOMAP),&’63
diffusion map,** and so on. These methods show great impacts
to several research fields, such as pattern recognitions, language,
and figure recognitions and artificial intelligence. These
dimensionality reduction methods and their modified versions
were used to analyze the results of the ground-state molecular
dynamics.*>**~7° An overview of all technical details of these
methods and their application in ground-state molecular
dynamics can be found in a recent review paper.”> However,
much less work was done in the employment of these
technologies to analyze the excited-state nonadiabatic dynamics.
Only recently, some initial efforts were devoted in this field. For
example, the diffusion map and PCA were used in the data
analysis of nonadiabatic dynamics.”'~’* Thus, more studies
should be performed to employ various dimensionality reduction
approaches, in order to extract the effective reaction coordinate
from nonadiabatic dynamics simulation. Although the employ-
ment of these dimensionality reduction tricks in principle does
not require the preknowledge of the reaction mechanism, great
caution should be paid in implementation and analysis. The brute
force employment of these pure mathematical methods may
result in artifacts in data analysis, because no physical insight is
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involved. Thus, it is also necessary to carefully check the
performance of these ML-based dimensionality reduction
methods as tools to analyze the nonadiabatic dynamics.

In this contribution, we try to use dimensionality reduction
approaches in the investigation of the geometrical evolution in
nonadiabatic dynamics. Two widely used dimensionality
reduction technologies, classical MDS and ISOMAP, are
employed to identify the geometrical evolution features from
the TSH calculations, and to build the active reaction coordinates
responsible for nonadiabatic dynamics. After the detailed
discussion on implementation details, we use classical MDS
and ISOMAP to examine the dynamical evolution of two typical
model systems, CH,NH," and phytochromobilin chromophore
(P®B) model. Although the current work is based on the TSH
calculations, it is also possible to use these analysis protocols in
other trajectory-based nonadiabatic dynamics methods. This
treatment may significantly reduce the difficulties in the analysis
of the geometrical evolution in the nonadiabatic dynamics of a
polyatomic system, particular in the case that many degrees of
freedom are involved.

This work is organized as follows. Section 2 focuses on the
theoretical and computational details. After the basic theories of
classical MDS and ISOMAP were introduced, various
implementation details, from data prescreening to effective-
coordinate construction, are discussed. Section 3 discusses the
performance of classical MDS and ISOMAP in the analysis of
nonadiabatic dynamics of two model systems, CH,NH," and
P®B model. Section 4 gives the summary of the current work.

2. THEORETICAL METHODS AND COMPUTATIONAL
DETAILS

2.1. Theoretical Methods. 2.1.1. Classical Multidimen-
sional Scaling. If many data points exit in a high dimensional
space, it is not possible to examine their distribution pattern by
eye view directly. A possible treatment on this type of problems is
to create a group of points with the same number in a low-
dimensional space, which preserves the distribution pattern of
original data set. This idea of dimensionality reduction provides
us a straightforward way to investigate the distribution of data set
under study, because it is much easier to “see” these points in the
low-dimensional space.

The classical MDS is one of widely used dimensionality
reduction methods,”*®® which tries to construct the low-
dimensional embedding pattern that preserves all pairwise
dissimilarities between data points under study. The basic
principle of classical MDS is outlined here and all theoretical
details can be founded in previous works.”

We define the pairwise dissimilarity matrix D, in which each
element d;; represents the so-called “distance” between two data
points. Later on, we also call D as the “distance matrix” in this
work for illustration.

The scalar product matrix B is obtained using the below
equation

B = —lJDZJ
2 (1)
where D is a squared proximity matrix as
D = [d,’] )
and J is a center matrix as
J=1—-n"11" 3)
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where I is unit matrix and # is the number of objects.

The diagonalization of the B matrix gives a set of eigenvalues.
After sorting the eigenvalues from largest to smallest, the
important dimension is identified. The larger eigenvalue
corresponds to more important dimension. For instance, if a
reduced space with m-dimension is considered, we keep the m
largest positive eigenvalues A; ..A,, and the corresponding m
eigenvectors e ... ¢,.

Embedding coordinates of all points in the low-dimensional
space are obtained by

i

L= (51"'em)

m

0 )
The relative embedding error in the dimensionality reduction is
computed according to the stress function introduced in the
MDS textbook.”’

2.1.2. Isometric Feature Mapping. When a data set is
distributed over a manifold, the distribution pattern of these data
points is not well described by the pairwise Euclidean distance
matrix. In this case, dimensionality reduction approaches within
the framework of manifold learning may become useful. One of
such approaches is the ISOMAP method,>°*°® which performs
the classical MDS analysis based on the distance matrix
represented by the so-called “geodesic distance” instead of the
“Euclidean distance”.

The ISOMAP idea is easily understood. In principle the
pairwise geodesic distance matrix should provide a better
representation of the distribution pattern of a data set over a
manifold. The “geodesic distance” between two points can be
approximated by the possible shortest hopping pathway through
all interconnected neighbor points. After the construction of the
pairwise geodesic distance matrix, the next step goes back to the
classical MDS analysis.

2.1.3. Trajectory Surface Hopping Dynamics. In this work,
we mainly discuss the dimensionality reduction analysis of the
geometry evolution in on-the-fly Tully’s TSH simulation,
although it is trivial to use the similar analysis protocol in other
trajectory-based methods. We outline the concept of Tully’s
TSH approaches, because all details can be found in many
previous works.'>~'7*"***” In the Tully’s TSH framework, the
nuclear motion on the single potential energy surface is treated
by numerical propagation of the classical trajectory. The
electronic wave function was treated by quantum evolution.
Nonadiabatic transitions between different electronic states were
considered via Tully’s fewest switches approach.'> After the
combination of the on-the-fly dynamics, the TSH approach
becomes extremely powerful in the treatment of relatively large
and realistic molecular systems at atomic level with full degree of
freedom. The decoherence correction (with the parameter a =
0.1 hartree) proposed by Granucci et al. was employed.”” The
initial conditions (such as geometries and velocities) in the
dynamic simulations were generated from the Wigner
distribution of normal modes of the ground state. All dynamics
calculations and data analyses were done within the developing
version of the JADE package,”"** which includes a module to
interface with several electronic-structure methods in different
standard quantum chemistry packages.

2.2. Implementation Details. To employ the classical MDS
and ISOMAP in the analysis of the nonadiabatic dynamics
trajectories, we need to collect many geometry snapshots during
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the trajectory propagation. A pairwise distance matrix is built to
describe the “dissimilarity” between two geometries. Following
the idea of previous works,”' we use the root-mean-square
deviation (RMSD) of two geometries to represent their
dissimilarity. The resulted distance matrix is directly used in
the further classical MDS analysis. To perform the ISOMAP
analysis, we need to build the pairwise geodesic distance matrix
and then perform the classical MDS analysis. After the classical
MDS or ISOMAP analysis, all molecular geometries in
nonadiabatic dynamics evolution are represented by a group of
data points in a low-dimensional space. The “distance” between
two geometries is represented by the Euclidean distance between
two corresponding points in this low-dimensional space. Overall,
the distribution of data points in the low-dimensional space
should provide a direct view of the trajectory propagation in the
original high-dimensional coordinate space. Next we discussed
implementation details.

2.2.1. Geometry Collection. Let us assume that many
trajectories are generated from the TSH calculations. Several
geometries are selected in each trajectory, which include the
starting geometry at time zero, many snapshots in the trajectory
propagation with certain time intervals and geometries at hops.
We collected these selected geometries over all trajectories to
define a preliminary geometry database. We also added the
ground-state minimum geometry (or several minimum-energy
geometries) into this database, because it naturally defines a
starting reference in trajectory analysis.

After a trajectory hops back to the ground states, the excessive
kinetic energy may simply result in a highly distorted molecular
geometry or even cause the cleavage of the system in the lack of
dissipation. To distinguish the nonadiabatic decay dynamics and
the further “hot” molecular motion on the ground state, we may
stop the geometries snapshot to avoid the system dissociation.
Certainly, sometimes the system does not break after jumping
back to the ground state and the photoproducts are formed. In
this case, we do not need to stop the trajectory counting and the
geometry evolution may give a full dynamical picture of
photoinduced reactions, namely from reactants to products.

2.2.2. Calculation of the Pairwise Dissimilarity/Distance
Matrix. The dissimilarity or distance between any two geo-
metries is computed by measuring their RMSD. The calculation
of the RMSD follows previous works,”*”” which removes the
contribution of translational and rotational motions. If necessary,
symmetric operations (such as mirror reflection and permutation
of identical atoms) should also be taken into account in the
RMSD calculations. The pairwise distance matrix defines a fully
connected network or a graph, in which each node corresponds
to a selected geometry and the internode connection represents
their dissimilarity.

A few of highly distorted geometries may appear, which are far
from the starting points or ground-state minimum. The existence
of these “strange” geometries may give strange numerical results,
although they are very rare. We should carefully remove them
and check the analysis result. In practices, we define the ground-
state minimum as the reference point, because all trajectories
start from some initial geometries near it. The “distances”
between all geometries and ground-state minimum were
computed. When the distance is larger than a cutoff value, we
do not take the corresponding geometry into account. The setup
of reasonable cutoff values was possible by carefully checking the
final results. In this way, we sometimes disregard < 5% points in
the final analysis.
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Figure 1. (a) Eigenvalue spectrum for the classical MDS analysis of the nonadiabatic dynamics of CH,NH," without symmetry consideration. (b) The
embedding error as the function of dimension. (c) Locations of sampled geometries in the low-dimensional space spanned by two leading reduced
coordinates RCI and RCIL Color codes indicate the time dependent dynamics process. Geometrical aggregations in four representative locations are
shown. (d) Locations of the initial geometries and the hopping geometries in the two-dimensional reduced space.

2.2.3. Classical Multidimensional Scaling (MDS). Starting
from the distance matrix, we performed the dimensionality
reduction by using classical MDS. The leading eigenvalues are
given and the embedding coordinate of each point in the low-
dimensional space is computed. In the current analysis, the total
number of geometries is not extremely huge. Thus, we do not use
additional tricks, such as the selection of landmark points®"*® and
clustering technologies,”® to reduce the number of geometries.
These tricks should in principle become very helpful if an
extremely huge amount of geometries are involved.

2.2.4. Isometric Feature Mapping (ISOMAP). In ISOMAP,
the classical MDS analysis should be performed based on the
pairwise geodesic distance matrix. As discussed previously, the
pairwise distance (or RMSD) matrix corresponds to a fully
connected graph, in which each node represents a selected
geometry and the associating connecting distance reflects the
distance between two nodes. We cut the connection between
two nodes when their distance is larger than a threshold. Two
ways were normally used to set up this cutoff threshold, either by
giving the largest cutoff distance (&-ball approach) or by setting
the maximum number of connecting nodes for each node (k-
point approach).*”®* This step gives us a partial interconnected
graph.

Next, the pairwise geodesic distances for all nodes were
constructed by usin§ Dijkstra’s algorithm”®”® or the Floyd—
Warshall algorithm.””~*" In principle we wish to get a new fully
connected graph, in which all nodes are connected and the
distance between two nodes reflect their geodesic distance. In
practices, only the k-point approach gives us a fully connected
graph, while the &-ball approach may not. When ¢ is too small,
the resulted graph may not be fully connected. For example, the
whole graph may be divided into a few subgraphs that are not
connected to each other, or a few of the nodes may be isolated.
This results in the numerical problem in the further analysis
because the “residual” infinity distances become dominant in the
dimensionality reduction. In this case, we removed all points that
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are not connected to the point representing ground-state
minimum and then defined a smaller fully connected graph.
Certainly, we need to avoid that too many points are removed. In
both e&-ball and k-point approaches, the dependences of
embedding errors on dimension, cutoff € or k values, are
carefully checked.

2.2.5. Further Analysis of Geometry Evolution. We plotted
the embedding coordinates as scattering points in the low-
dimensional space spanned by reduced coordinates. Each point
represents a geometry snapshot. After grouping geometries with
similar reduced coordinates, we obtain a clear view on
geometrical feature. The correlation between reduced coor-
dinates and internal coordinates is constructed by averaging all
geometries within a grid. Then the leading reaction coordinates
are easily identified by following the pathway from starting points
to hopping points, as well the time evolution of all points.

2.2.6. Implementation Issues. The RMSD between two
geometries is computed with a simple homemade FORTRAN
code and the algorithm was taken from previous work.”””” Most
analysis codes were written with Python language. A few of the
Python routines, including data prescreening and data analysis,
were developed based on the Scikit-learn toolkit."”*’ For
example, the pairwise geodesic distance graph was constructed
by calling the inner module of Scikit-learn Python toolkit.
Because the MDS module in Scikit-learn Python toolkit is not
implemented in the way of standard classical MDS, we developed
the python routine for this purpose.

3. RESULTS

3.1. CH,NH,* Results. The nonadiabatic dynamics of
CH,NH," was investigated by the TSH method at the SA3-
CASSCF(6,4)/6-31G* level (three states in the state average
calculation with six electrons in four orbitals: two o, one 7, and
one 7*), the JADE code’"** on the basis of the MOLPRO
program®* was used to simulate the nonadiabatic dynamics. The
initial state is S, and we totally consider 100 trajectories. For each
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Figure 2. Classical MDS analysis of the nonadiabatic dynamics of CH,NH,* with symmetry consideration. (a) Locations of the sampled geometries as a
function of RCI and RCII. Colors indicate the evolution over time. (b) Locations of the initial geometries and the hopping geometries in the map.

trajectory, the snapshots are taken at every 2 fs and the maximum
time to stop the geometry record is 100 fs. When a trajectory
stays on the ground state for more than 20 fs after the internal
conversion, we stop count geometries. The ground-state
minimum-energy geometry and the first S, — S, hopping
geometries were also included. Totally 4458 geometries were
collected to form a database. Then the pairwise dissimilarity
matrix was computed by measuring the RMSD between all
geometry pairs. Next we removed the geometries far from the
ground-state minimum; ~5% geometries were discarded.

3.1.1. Classical MDS Analysis without Symmetry Consid-
eration. To get a preliminary understanding of the nonadiabatic
dynamics of CH,NH,", we first consider the classical MDS
analysis based on the RMSD matrix without symmetry
consideration. Both eigenvalues and embedding errors decrease
with the dimension increasing, see Figure 1a,b. Because the first
and second dimensions are dominant as shown in Figure 1a, we
plot the representing points in the two-dimensional space,
spanned by two leading coordinates, RCI and RCII in Figure Ic.
They can be treated as the major reactive coordinates. The
geometrical motion in the nonadiabatic dynamics vs time is
reflected by the evolution of the scattering points in Figure 1c. It
is clear that the data points representing the trajectory
propagation clearly form a circle, more precisely an ellipse. The
major axis of this ellipse is basically parallel with RCI, which is
slightly longer than the minor axis parallel with RCII. Because we
did not take symmetry into account, this ellipse in fact directly
reflects the internal rotation of the CN bond in the nonadiabatic
dynamics of CH,NH,". The starting geometrical aggregation
(labeled as a) is not far from the crossing point between the
major axis and the ellipse itself. In the geometrical aggregates b
and d, two moieties at the C and N sides are nearly perpendicular
to each other. We have two such geometrical aggregates with a
similar number of structures because the internal rotation of the
central CN bond may take place along the clockwise or
anticlockwise pathway. The structure aggregate d collects all
structures after the 180° rotation of the C—N bond. The current
ellipse perfectly explains the internal rotation of the C—N bond,
and the hop may take place at different torsional angles.
However, the simple two reduced coordinates cannot provide
more insight on other important molecular motion; for example,
we easily see that some hopping geometries overlap with the
starting geometries as shown in the Figure 1d. In one word, when
no symmetry is considered, the limited information in the two-
dimensional space may not provide detailed understanding on
the geometry evolution.

3.1.2. Classical MDS Analysis with Symmetry Consider-
ation. Next the symmetry properties (permutation of identical
atoms and mirror reflection) were taken into account in the

4615

construction of RMSD distance matrix, and then the classical
MDS was performed. Two largest eigenvalues are dominant and
the embedding errors rapidly decrease with the dimension
increasing, as shown in Figure S1 of Supporting Information. The
geometry evolution in the two-dimensional space is given in
Figure 2a. Under symmetry considerations, the clockwise and
anticlockwise internal rotations along the CN bond are
equivalent, and thus the distribution of data points does not
give a circle. The starting geometries are located near RCI =~ —0.2
and RCII & 0.15. In the early stage of dynamics, these points
mainly move more along the RCII direction. Afterward, they
move along the RCI direction, and a large area of two-
dimensional space is covered. Most importantly, initial geo-
metries and hopping geometries are clearly separated as shown in
Figure 2b. The inclusion of symmetry consideration displays
more details of molecular evolution.

By checking geometry aggregates at different grid regions in
Figure 3, we know that RCI mainly refers to the central CN

RCll dimension

¥
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0.05<RClI<0.2 0.05<RClI<0.2

Figure 3. Geometry aggregates at a few important grid regions with
different values of RCI and RCIL

torsional motion and RCII is governed by the CN stretching
motion. This relationship between the reduced coordinates and
internal coordinates (average over geometries within a small
grid) is further confirmed by Figure 4. It is clear that the RCI is
relevant to the torsional motion along the CN bond because one
of HCNH dihedral angle changes from ~10° (RCI & —0.25) to
~70° (RCI #~ 0.25). However, the RCI almost does not depend
on the CN stretching motion. As the contrast, the RCII is not
relevant to the torsional motion but highly correlated to the CN
stretching motion. Within the two-dimensional space, the
geometrical evolution in the nonadiabatic dynamics of
CH,NH," is easily analyzed. In the early stage of dynamics, the
system mainly experiences the CN stretching motion on the
excited states. Later on the torsional motion starts. The hops
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(A, B, and C); (b) along the A pathway; the inserting panel gives the CH,NH,* geometry and atomic labels; (c) along the B pathway; (d) along the C

pathway.

back to the ground state may take place when the CN stretching
motion is dominant or torsional motion is dominant. Some hops
may also happen with the mixture of two internal motions. This
picture is consistent with the previous studies results on the
dynamics of CH,NH,*.'®'”*"**% More interestingly, the
previous study figured out that the S,/S, conical intersection
seam is relevant to the torsional coordinate along the CN bond
and the CN stretching coordinate. With more torsional angle,
less stretching motion is required to access the conical
intersection seam. This feature is exactly consistent with the
hopping distribution in the reduced space (see Figure 2b).
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It is well-known that the pyrimidalization plays an essential
role in the nonadiabatic dynamics of CH,NH,*, 1617212655 hat
is, the minimum protonated-Schiff-base (PSB) model. In fact,
such a type of hydrogen-out-of-plane (HOOP) motion is also
very important in the nonadiabatic dynamics of other PSB
systems.”*”** Thus, it is very interesting to examine whether the
current analysis protocol can identify such a critical feature.

Starting from Franck—Condon region (RCI &~ —0.2 and RCII
~ 0.15), we considered three different paths, A, B, and C as
shown in Figure Sa. Six representative dihedral angles (D;_,_¢_s,
Dy s-¢ Diyy3o4p Dyy_4-3 D34y and D6—5—1—2) were
chosen to characterize the pyramidalization, and the atomic
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labels were shown in Figure S (b). The A pathway describes the
pure twisting motion in which the RCI changes and RCII
remains unchanged. We clearly see that the pyramidalization
angles increase along the A pathway (Figure Sb). Along the B
pathway, the RCII changes, while RCI remains unchanged. This
pathway describes the pure CN stretching motion and the
pyramidalization is also relevant (Figure Sc). The C pathway
describes that both CN twisting and stretching motions are
involved (Figure 5d), which starts from the FC region to the
ending point near RCI ~ 0.25 and RCII & —0.35, Along it, we
also see the contribution of pyramidalization. This shows that
pyramidalization contributes to two dominant reduced coor-
dinates (RCI and RCII). Also because of this reason, it is not
suitable to check the dependence of pyramidalization vs only one
reduced coordinate by averaging of relevant dihedral angles over
other reduced coordinates. Overall, the identification of
pyramidalization as the reactive coordinate is possible within a
two-dimensional reduced space spanned by RCI and RCIL

As a short summary, RCI is mainly correlated to the torsional
motion along the CN bond while RCII is relevant to the
stretching motion along the CN bond. The pyramidalization
motions, on the other hand, contribute to both RCI and RCIIL.

3.1.3. ISOMAP Analysis with Symmetry Consideration.
Next, we try to perform the ISOMAP analysis, in which both e-
ball and k-point cutoft approaches were examined. As shown in
Figure 6, when the cutoff threshold is large than 0.4 in the e-ball
approach, the distribution of data points in the low dimensional
space is very similar to that obtained by classical MDS. When this
value becomes smaller, the different distribution patterns appear
and the embedding error rises (Figure S2). Only when the cutoff
threshold is less than 0.15 does the embedding error start to
decrease again. Although different distribution patterns appear
with small ¢, too many data (>50% in the & < 0.15 case) were
disregarded due to their nonconnectivity. Thus, we do not
discuss the results from the e-ball ISOMAP analysis.

When the k-point cutoff approach is employed, no data point
is disregarded. As shown in Figure S3, the embedding error is
large with k = 2, while similar distribution patterns are observed
when k = 4—8. Thus, we discuss the results with the k = 8 case, in
which the RCI coordinate is relevant to both of CN bond
stretching and twisting motion (Figure 7). Starting from the FC
region with RCI & 0, the RCI is dominated by the CN stretching
motion for RCI > 0, while it is highly relevant to the CN twisting
motion for RCI < 0. It is also clear that the hops take place either
in the region with either large CN stretching or strong torsional
motion.

We also examine the correlations between pyramidalization
motions and reduced coordinates. Similar to the MDS analysis,
two pathways (A and B in the Figure 8a) are observed, whose
directions are determined by the connection pathways from the
Franck—Condon region to two different hopping areas. As
shown in Figure 8b,c, it is clear that the pyrimidalization motions
take place from starting points to the hopping points. Although
such pyrimidalization motions appear in both A and B pathways,
they are more significant in the later one involving the CN
twisting motion. We also try to check the correlation between
these dihedral angels and two reduced coordinates directly (C
and D in the Figure a). As shown in Figure 8d,e, the
pyramidalization motions seem highly correlated to the second
reduced coordinate RCII, although it is weakly relevant to RCL
Thus, the inclusion of the second dimensionality (or the second
reduced coordinate RCII) should give more detailed insight of
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Figure 6. ISOMAP analysis of the nonadiabatic dynamics of CH,NH,"
with symmetry consideration. (a—d) &-ball ISOMAP results with
different cutoff thresholds and (e—h) k-point ISOMAP results with
different k values.

molecular motion, although the first leading reduced coordinate
RCI has already capture major geometry evolution.

The results above implied that the ISOMAP analysis with
suitable setup may provide more information on important
molecular motion. The nonlinear feature of ISOMAP may
become extremely attractive when the data points are distributed
in a manifold with high dimension.

3.2. The ZaZsZa Isomer of P®B Model. The photo-
induced dynamics of phytochromes have received considerable
attention,” " because of its relevance to the bioclock regulation
of the plants and other autotrophs, such as seed germination,
growth, phototaxis, pigmentation, and so on. Our previous
works” on the phytochromobilin chromphore (P®B) model
gave physical insight to its nonadiabatic dynamics. Here we try to
reinvestigate the nonadiabatic dynamics of the P®B model
compound, particular the ZaZsZa isomer that was identified as
the main isomer of phytochromes by Raman experiments.”>”*
Because the current system is not very small, it is interesting to
examine its photoinduced nonadiabatic dynamics in the basis of
the classical MDS and ISOMAP analyses. The nonadiabatic
dynamics of the P®B model was investigated by TSH method at
the semiempirical OM2/MRCI level'””>™” including 16
electrons in 12 orbitals: six 7, two n, and four z*. To unify the
format of output data for classical MDS and ISOMAP analyses,
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the JADE code”"*” with the interface to the MNDO program”®
was used to simulate the nonadiabatic dynamics. The current
calculations employed the same setup as reported in our previous
work.”” For each trajectory, the snapshots were taken at every 20
fs and the maximum time to record geometry is 600 fs. Each
successful trajectory gives 30 geometries. A few trajectories do
not go to the end and in these cases less snapshots are taken.
After including the first S; — Sy hopping geometries and the

ground-state minimum, 3867 geometries were collected to form

4618

a data set. The RMSD calculations do not include all hydrogen
atoms.

The classical MDS analysis of the snapshots in trajectory
propagation gives a very interesting distribution pattern in the
low-dimensional space spanned by two reduced coordinates.
Starting from the Franck—Condon region labeled by the “A” area
in Figure 9 (RCI ~ —0.2 and RCII =~ 0.1), two different
propagation pathways are clearly identified. One branch follows
the A—B—C pathway and the second branch is distributed along
the A—D—E pathway.

Along the A—B—C pathway, the dihedral angle of the Cy—C,
bond changes from ~0° at the A area, ~ 90° at the B area to
~180° at the C area. We also clearly see that many hops in this
channel take place near the B area. Thus, it is very clear that the
torsional motion of the Cy—C,, bond is responsible for the A—
B—C pathway. As a contrast, it is very clear that the torsional
motion of the C;y—C,; bond is responsible for the A—D—E
pathway. Most hops in this pathway take place near the D area
with the dihedral angle of the C;,—C;; bond close to 90°. The
ratio between the numbers of hops in two channels is around 3:1.

Overall, the two-dimensional data map clearly explains the
nonadiabatic dynamics. The major reaction channel in the
nonadiabatic decay follows the Cy—C,, torsion, while the
secondary channel follows the C,;—C,; torsional motion. All
main features are very consistent with our previous results based
on the analysis of the time evolution of a large number of internal
coordinates over many trajectories.9

Although the classical MDS analysis provides a clear insight on
molecular motion in the nonadiabatic dynamical evolution, at
least two reduced coordinates are needed for a good
representation. This feature is also reflected by the fact that the
second eigenvalue give an important contribution (see Figure S4
in SI)

Next we performed the ISOMAP analysis with both e-ball and
k-point approaches. When the very small cutoff threshold £ = 0.2
was used, the embedding error becomes significant (Figure S5).
When such value falls into the range of 0.3—0.6, the embedding
errors become stable. Similar features are observed in the k-point
cases. The very small k value (k = 2) gives very large embedding
error and such error becomes stable with k > S (Figure S6).
When the suitable cutoff values were employed in the k-point
case (k> 5) and the e-ball case (& = 0.4—0.6), our analyses found
that important features are rather similar in data distribution.
Thus, we only discuss the e-ball case with € = 0.4.

When the suitable cutoff threshold, such as 0.4, was employed
in the e-ball approach, the ISOMAP analysis compresses the data
distribution into the tribranched shape in the two-dimensional
space (Figure 10). The second eigenvalue gives much less
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The Franck—Condon region is located near RCI ~ —0.1.
When the RCI becomes larger (RCI > 0), Figure 11a shows that
the dihedral angle of the Cy—C,, bond increases dramatically
from 0° (RCI % 0) to 90° (RCI ~ 0.2) and even to 150° (RCI ~

contribution (shown in Figure S4) and thus the RCII
contribution is minor. It may be enough to use the most leading
reduced coordinate RCI to describe major dynamics behavior,
and thus we can assign it as the main reaction coordinate.
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1). The hops with RCI > 0 take place near the region with
dihedral angle of the Cy—C,, bond near 90° (RCI = 0.2). After
RCI > 1.5, the torsion becomes less important. On the other
hand, the significant C,;—C,; torsion is responsible for the
region with —1 < RCI < 0 and hops following this channel take
place in the region with the dihedral angle of the C,,—C;; bond
near 90° (RCI ~ —0.3).

The Cy—C,, twisting motion brings the system from the
Franck—Condon region to the hopping points, and Figure 11b
shows that the elongation of the Cy—C,, bond and the
shortening of C,y—C;; bond also take place. After hops, the
system moves to photoproducts and this process is characterized
by the Cy—C,, twisting angle accessing >150°. During the
photoproduct formation on the ground state, the shortening of
Cy—C,y and the elongation of the C;,—C;, are observed. A
similar bond alternation tendency is observed in the RCI < 0.1
case of the C),—C,, bond twisting channel.

Besides the main active coordinates, Cg—C,, or C;,—C,,, it is
also possible to know whether other coordinates are involved in
RCI. In Figure 11a, the Cy—C,, torsion is always accompanied by
the small C;—Cq torsion. Concerning with the hopping
distribution, it is very clear that the CI seam in this channel is
relevant to these two coordinates. At the same time, the C,,—C;
and C,,—C,s torsional motions are also correlated at the
corresponding CI seam. These features are consistent with our
previous studies.””

As a short summary, the ISOMAP is a very powerful approach
to perform the dimensionality reduction analysis of the
nonadiabatic dynamics of the POB model. Although the classical
MDS method is good enough to represent the dynamical feature,
at least a two-dimensional space is required. The ISOMAP with
the suitable setups on the other hand, compress all necessary
information into a one-dimensional space. In this case all
dynamical features can be well described by the reaction along a
single reduced coordinate RCI, and thus we can safely assign it as
the reaction coordinate. This provides a direct way to examine
the essential molecular motion responsible for nonadiabatic
decay.

All dimensionality reduction approaches try to extract the
“main” or “leading” pattern based on the statistical analysis of a
large number of data. Although it shows great promise in
capturing the leading features, some minor details are missing. At
the same time, the results by these approaches are only
meaningful when a large number of data are available.
Particularly, if we wish to identify a pattern, the amount of data
to capture this pattern should not only be large enough but also
have a sufficient proportion in all used data points. Thus, we
expect that the current dimensionality reduction approaches
cannot capture the very minor reaction channels, because the
number of trajectories passing them is very low.

4. CONCLUSION

In this work, we employ two dimensionality reduction analysis
tools, classical MDS and ISOMAP, to examine the molecular
motion in nonadiabatic dynamics. Particularly, our purpose is to
construct the reactive coordinates responsible for nonadiabatic
decay by these dimensionality reduction algorithms. Two
representative systems were employed to check the performance
of these dimensionality reduction algorithms.

The classical MDS and ISOMAP analyses follow the below
protocol. The dissimilarity/“distance” between any two arbitrary
geometries obtained in the trajectory propagation is measured by
their RMSD. After the RMSD distance matrix is set up based on
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many snapshots over all trajectories, we can perform the classical
MDS and ISOMAP analyses. Then the geometrical data
distribution pattern is constructed in the low-dimensional
space spanned by reduced coordinates. By checking the
geometry aggregates at different areas in the low-dimensional
space, we can directly “see” the essential molecular motion. This
provides a straightforward way to build the major reaction
coordinates responsible for the nonadiabatic dynamics.

Although the classical MDS is a rather simple dimensional
reduction approach, the employment of it already provides many
essential evolution features of nonadiabatic dynamics, for both
two-model systems under study. The symmetry properties in the
dynamical evolution can be well displayed in the classical MDS
analysis. The consideration of the symmetry (permutation,
reflection) normally enhances the contribution of the leading
dimension. Although the classical MDS is very powerful, we also
realize that maybe several reduced coordinates, not only one, are
equally important to illustrate the nonadiabatic dynamics. For
example, at least two dimensions are required for the correct
analyses of two representative examples CH,NH," and P®B in
this work.

As a powerful nonlinear manifold dimensionality reduction
method, ISOMAP may largely compress the information pattern
of molecular motion in the nonadiabatic dynamics evolution. In
some cases, even a single reduced coordinate RCI may provide
many essential features of nonadiabatic dynamics. However, as
pointed out by a previous work,>>*> the setup of the correct
cutoft parameter in the ISOMAP is not a trivial task.

Although these dimensionality reduction methods have been
used to analyze the conformation evolution of the ground-state
molecular dynamics, only recently have some works started to
use these ideas to examine nonadiabatic dynamics.”"~"* The
current work represents our initial efforts to use linear and
nonlinear dimensionality reduction approaches to analyze the
geometry evolution of nonadiabatic dynamics. Our current
results display that it is possible to extract the major molecular
motion responsible for the nonadiabatic dynamics by using a few
leading reduced coordinates. These leading coordinates are a
mixture of different key molecular motions. For example, the
dimensionality reduction analysis of the nonadiabatic dynamics
of CH,NH," shows that several molecular motions (stretching,
twisting, and pyramidalization) contribute to the leading reduced
coordinates. However, the employment of these analysis tools is
not trivial, which sometimes requires the careful setup of correct
parameters and performing the suitable data prescreening. In
more real situations, geometry evolution may become much
more complicated in nonadiabatic dynamics. For example,
several nuclear degrees of freedom may be highly mixed, very
complicated molecular motions (such as ring opening and ring
puckering) may be involved in the nonadiabatic decay, trajectory
evolution may follow many distinguished reaction pathways, and
the system size may become extremely huge. In these cases, the
identification of the active coordinates by dimensionality
reduction is more challenging. This should be a very interesting
topic in future study.

Here we wish to give some comments on a few important
issues that may be useful to address these challenges. The current
dimensionality reduction approach is based on the statistical
analysis of a large amount of data depicting the geometry
evolution. Only when these data can capture the major geometry
evolution, may we extract a few leading coordinates properly.
Thus, the selection of the suitable molecular descriptors™ ~'*°
(for the proper representation of many input geometries) in
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dimensionality reduction analyses should become very critical in
the description of the complicated molecular motion in the
nonadiabatic dynamics of more realistic situations. In this sense,
other molecular descriptors,99_106 such as Bag of Bonds,'**
Coulomb matrix,””'* etc., may become useful in the analysis of
more complicated nonadiabatic dynamics. To deal with very
complicated molecular motions, we may need some additional
tricks (such as landmark points®') in the MDS and ISOMAP
analysis, or even employ other dimensionality reduction
approaches.”>**0>97%%7% We also need to point out that
sometimes it may not easy to only use one or two reduced
coordinates to represent the highly mixed active motion of the
molecular systems possible due to the strange topologic structure
of data distribution. This problem is “detected” from the large
embedding errors. In this case, more reduced coordinates should
be used to describe the molecular motion until the embedding
errors get small enough. In addition, it is very challenging to
include the evolution of electronic degrees in the dimensionality
reduction analysis of nonadiabatic dynamics, because it may shed
light on the interesting correlation between electronic and
nuclear degrees of freedom. The proper way to include the
electronic motion in the molecular descriptor is also an
interesting topic in the future. At the same time, these
dimensionality reduction approaches can also be used in other
trajectory-based or Gaussian-wavepacket-based methods. All
problems mentioned above open many research opportunities in
the future.

B ASSOCIATED CONTENT

© Supporting Information

The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jctc.7b00394.

Some useful illustrative figures of eigenvalues, embedding

errors, and the data distributions in classical MDS and
ISOMAP (PDF)

B AUTHOR INFORMATION

Corresponding Author

*Fax: +86-532-80662778. Tel.: +86-532-80662630. E-mail:
lanzg@qibebt.ac.cn, zhenggang lan@gmail.com.

ORCID

Xusong Li: 0000-0001-6586-7746

Yu Xie: 0000-0001-8925-6958

Funding

This work is supported by NSFC Project (Nos. 21673266 and
21503248) and the Natural Science Foundation of Shandong
Province for Distinguished Young Scholars (JQ201504).

Notes

The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

The authors thank Supercomputing Centre, Computer Network
Information Center, CAS, National Supercomputing Center in
Shenzhen, National Supercomputing Center in Guangzhou, and
the Super Computational Centre of CAS-QIBEBT for providing
computational resources.

B REFERENCES

(1) Domcke, W.; Yarkony, D. R. Role of Conical Intersections in
Molecular Spectroscopy and Photoinduced Chemical Dynamics. Annu.
Rev. Phys. Chem. 2012, 63, 325—352.

4621

(2) Matsika, S.; Krause, P. Nonadiabatic Events and Conical
Intersections. Annu. Rev. Phys. Chem. 2011, 62, 621—643.

(3) Gonzélez, L.; Escudero, D.; Serrano-Andrés, L. Progress and
Challenges in the Calculation of Electronic Excited States. Chem-
PhysChem 2012, 13, 28—S51.

(4) Domcke, W.; Yarkony, D. R; Képpel, H. Conical Intersections:
Electronic Structure, Dynamics & Spectroscopy; World Scientific, 2004.

(5) Meyer, H. D.; Manthe, U; Cederbaum, L. S. The Multi-
Configurational Time-Dependent Hartree Approach. Chem. Phys. Lett.
1990, 165, 73—78.

(6) Wang, H. B,; Thoss, M. Multilayer Formulation of the
Multiconfiguration Time-Dependent Hartree Theory. J. Chem. Phys.
2003, 119, 1289—1299.

(7) Schréter, M.; Ivanov, S. D.; Schulze, J.; Polyutov, S. P.; Yan, Y.;
Pullerits, T.; Kiihn, O. Exciton-Vibrational Coupling in the Dynamics
and Spectroscopy of Frenkel Excitons in Molecular Aggregates. Phys.
Rep. 2015, 567, 1-78.

(8) Li, X. S; Tully, J. C; Schlegel, H. B.; Frisch, M. J. Ab Initio
Ehrenfest Dynamics. J. Chem. Phys. 2005, 123, 084106.

(9) Isborn, C. M; Li, X. S.; Tully, J. C. Time-Dependent Density
Functional Theory Ehrenfest Dynamics: Collisions between Atomic
Oxygen and Graphite Clusters. J. Chem. Phys. 2007, 126, 134307.

(10) Cheng, S. C; Zhy, C. Y; Liang, K. K;; Lin, S. H.; Truhlar, D. G.
Algorithmic Decoherence Time for Decay-of-Mixing Non-Born-
Oppenheimer Dynamics. J. Chem. Phys. 2008, 129, 024112.

(11) Meng, S.; Kaxiras, E. Real-Time, Local Basis-Set Implementation
of Time-Dependent Density Functional Theory for Excited State
Dynamics Simulations. J. Chem. Phys. 2008, 129, 054110.

(12) Bedard-Hearn, M. J.; Larsen, R. E.; Schwartz, B. J. Mean-field
Dynamics with Stochastic Decoherence (MF-SD): A New Algorithm
for Nonadiabatic Mixed Quantum/Classical Molecular-Dynamics
Simulations with Nuclear-Induced Decoherence. J. Chem. Phys. 2008,
123, 234106.

(13) Zhu, C.Y.; Jasper, A. W.; Truhlar, D. G. Non-Born-Oppenheimer
Liouville-Von Neumann Dynamics. Evolution of a Subsystem
Controlled by Linear and Population-Driven Decay of Mixing with
Decoherent and Coherent Switching. J. Chem. Theory Comput. 2008, 1,
527-540.

(14) Saita, K; Shalashilin, D. V. On-the-Fly Ab Initio Molecular
Dynamics with Multiconfigurational Ehrenfest Method. J. Chem. Phys.
2012, 137, 22A506.

(15) Tully, J. C. Molecular-Dynamics with Electronic-Transitions. J.
Chem. Phys. 1990, 93, 1061—1071.

(16) Barbatti, M.; Granucci, G.; Persico, M.; Ruckenbauer, M.; Vazdar,
M.; Eckert-Maksi¢, M.; Lischka, H. The on-the-Fly Surface-Hopping
Program System NEWTON-X: Application to Ab Initio Simulation of
the Nonadiabatic Photodynamics of Benchmark Systems. J. Photochem.
Photobiol, A 2007, 190, 228—240.

(17) Fabiano, E.; Keal, T. W.; Thiel, W. Implementation of Surface
Hopping Molecular Dynamics Using Semiempirical Methods. Chem.
Phys. 2008, 349, 334—347.

(18) Webster, F.; Wang, E. T.; Rossky, P. J.; Friesner, R. A. Stationary-
Phase Surface Hopping for Nonadiabatic Dynamics: Two-State
Systems. J. Chem. Phys. 1994, 100, 4835—4847.

(19) Richter, M;; Marquetand, P.; Gonzilez-Vazquez, J.; Sola, 1;
Gonzélez, L. SHARC: Ab Initio Molecular Dynamics with Surface
Hopping in the Adiabatic Representation Including Arbitrary
Couplings. J. Chem. Theory Comput. 2011, 7, 1253—1258.

(20) Doltsinis, N. L.; Marx, D. Nonadiabatic Car-Parrinello Molecular
Dynamics. Phys. Rev. Lett. 2002, 88, 166402.

(21) Dy, L. K; Lan, Z. G. An on-the-Fly Surface-Hopping Program
JADE for Nonadiabatic Molecular Dynamics of Polyatomic Systems:
Implementation and Applications. J. Chem. Theory Comput. 2015, 11,
1360—1374.

(22) Dy, L. K; Lan, Z. G. Correction to an on-the-Fly Surface-
Hopping Program JADE for Nonadiabatic Molecular Dynamics of
Polyatomic Systems: Implementation and Applications. J. Chem. Theory
Comput. 2015, 11, 4522—4523.

DOI: 10.1021/acs.jctc.7b00394
J. Chem. Theory Comput. 2017, 13, 4611—-4623


http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b00394
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.7b00394/suppl_file/ct7b00394_si_001.pdf
mailto:lanzg@qibebt.ac.cn
http://orcid.org/0000-0001-6586-7746
http://orcid.org/0000-0001-8925-6958
http://dx.doi.org/10.1021/acs.jctc.7b00394

Journal of Chemical Theory and Computation

(23) Zhu, C. Y.; Nobusada, K.; Nakamura, H. New Implementation of
the Trajectory Surface Hopping Method with Use of the Zhu-Nakamura
Theory. J. Chem. Phys. 2001, 115, 3031—3044.

(24) Belyaev, A. K;; Lasser, C.; Trigila, G. Landau-Zener Type Surface
Hopping Algorithms. J. Chem. Phys. 2014, 140, 224108.

(25) Shenvi, N.; Subotnik, J. E.; Yang, W. T. Simultaneous-Trajectory
Surface Hopping: A Parameter-Free Algorithm for Implementing
Decoherence in Nonadiabatic Dynamics. J. Chem. Phys. 2011, 134,
144102.

(26) Tapavicza, E.; Tavernelli, L; Rothlisberger, U. Trajectory Surface
Hopping within Linear Response Time-Dependent Density-Functional
Theory. Phys. Rev. Lett. 2007, 98, 023001.

(27) Werner, U; Mitri¢, R; Suzuki, T.; Bonaii¢-Koutecky, V.
Nonadiabatic Dynamics Within the Time Dependent Density Func-
tional Theory: Ultrafast Photodynamics in Pyrazine. Chem. Phys. 2008,
349, 319—-324.

(28) Fang, J. Y.; Hammes-Schiffer, S. Improvement of the Internal
Consistency in Trajectory Surface Hopping. J. Phys. Chem. A 1999, 103,
9399—9407.

(29) Akimov, A. V.; Neukirch, A. J.; Prezhdo, O. V. Theoretical Insights
into Photoinduced Charge Transfer and Catalysis at Oxide Interfaces.
Chem. Rev. 2013, 113, 4496—4565.

(30) Horenko, L; Salzmann, C.; Schmidt, B.; Schiitte, C. Quantum-
Classical Liouville Approach to Molecular Dynamics: Surface Hopping
Gaussian Phase-Space Packets. J. Chem. Phys. 2002, 117, 11075—11088.

(31) Shi, Q.; Geva, E. A Derivation of the Mixed Quantum-Classical
Liouville Equation from the Influence Functional Formalism. J. Chem.
Phys. 2004, 121, 3393—3404.

(32) Martens, C. C; Fang, J. Y. Semiclassical-Limit Molecular
Dynamics on Multiple Electronic Surfaces. J. Chem. Phys. 1997, 106,
4918—4930.

(33) Ando, K; Santer, M. Mixed Quantum-Classical Liouville
Molecular Dynamics without Momentum Jump. J. Chem. Phys. 2003,
118, 10399—10406.

(34) Ryabinkin, I. G.; Hsieh, C. Y.; Kapral, R.; Izmaylov, A. F. Analysis
of Geometric Phase Effects in the Quantum-Classical Liouville
Formalism. J. Chem. Phys. 2014, 140, 084104.

(35) Kapral, R; Ciccotti, G. Mixed Quantum-Classical Dynamics. J.
Chem. Phys. 1999, 110, 8919—8929.

(36) Liu, J. A Unified Theoretical Framework for Mapping Models for
the Multi-State Hamiltonian. J. Chem. Phys. 2016, 145, 20410S.

(37) Tao, G. H. Coherence-Controlled Nonadiabatic Dynamics via
State-Space Decomposition: A Consistent Way to Incorporate
Ehrenfest and Born-Oppenheimer-Like Treatments of Nuclear Motion.
J. Phys. Chem. Lett. 2016, 7, 4335—4339.

(38) Meyer, H. D.; Miller, W. H. Classical Analog for Electronic
Degrees of Freedom in Non-Adiabatic Collision Processes. J. Chem.
Phys. 1979, 70, 3214—3223.

(39) Stock, G.; Thoss, M. Semiclassical Description of Nonadiabatic
Quantum Dynamics. Phys. Rev. Lett. 1997, 78, 578—581.

(40) Cotton, S.].; Miller, W. H. Symmetrical Windowing for Quantum
States in Quasi-Classical Trajectory Simulations: Application to
Electronically Non-Adiabatic Processes. J. Phys. Chem. A 2013, 117,
7190—7194.

(41) Sun, X; Wang, H. B,; Miller, W. H. Semiclassical Theory of
Electronically Nonadiabatic Dynamics: Results of a Linearized
Approximation to the Initial Value Representation. J. Chem. Phys.
1998, 109, 7064—7074.

(42) Ben-Nun, M.; Martinez, T. J. Ab Initio Quantum Molecular
Dynamics. Adv. Chem. Phys. 2002, 121, 439—512.

(43) Richings, G. W.; Worth, G. A. A Practical Diabatisation Scheme
for Use with the Direct-Dynamics Variational Multi-Configuration
Gaussian Method. J. Phys. Chem. A 2018, 119, 12457—12470.

(44) Yonehara, T.; Hanasaki, K.; Takatsuka, K. Fundamental
Approaches to Nonadiabaticity: Toward a Chemical Theory beyond
the Born-Oppenheimer Paradigm. Chem. Rev. 2012, 112, 499—542.

(45) Lu, J. F; Zhou, Z. N. Improved Sampling and Validation of
Frozen Gaussian Approximation with Surface Hopping Algorithm for
Nonadiabatic Dynamics. J. Chem. Phys. 2016, 145, 124109.

4622

(46) Heaps, C. W.; Mazziotti, D. A. Accurate Non-Adiabatic Quantum
Dynamics from Pseudospectral Sampling of Time-Dependent Gaussian
Basis Sets. J. Chem. Phys. 2016, 145, 064101.

(47) Herman, M. F. Toward an Accurate and Efficient Semiclassical
Surface Hopping Procedure for Nonadiabatic Problems. J. Phys. Chem. A
2005, 109, 9196—9205.

(48) Curchod, B. F. E; Tavernelli, L; Rothlisberger, U. Trajectory-
Based Solution of the Nonadiabatic Quantum Dynamics Equations: An
on-the-Fly Approach for Molecular Dynamics Simulations. Phys. Chem.
Chem. Phys. 2011, 13, 3231—-3236.

(49) Langer, H.; Doltsinis, N. L. Nonradiative Decay of Photoexcited
Methylated Guanine. Phys. Chem. Chem. Phys. 2004, 6, 2742—2748.

(50) Craig, C. F.; Duncan, W. R;; Prezhdo, O. V. Trajectory Surface
Hopping in the Time-Dependent Kohn-Sham Approach for Electron-
Nuclear Dynamics. Phys. Rev. Lett. 2008, 95, 163001.

(51) Mitri¢, R;; Werner, U.; Wohlgemuth, M; Seifert, G.; Bonati¢-
Koutecky, V. Nonadiabatic Dynamics within Time-Dependent Density
Functional Tight Binding Method. J. Phys. Chem. A 2009, 113, 12700—
1270S.

(52) Klein, S.; Bearpark, M. J.; Smith, B. R.; Robb, M. A.; Olivucci, M.;
Bernardi, F. Mixed State on the Fly’ Non-adiabatic Dynamics: The Role
of the Conical Intersection Topology. Chem. Phys. Lett. 1998, 292, 259—
266.

(53) Yu, L; Xu, C; Lei, Y. B.; Zhu, C. Y.; Wen, Z. Y. Trajectory-Based
Nonadiabatic Molecular Dynamics without Calculating Nonadiabatic
Coupling in the Avoided Crossing Case: Trans < -> Cis Photo-
isomerization in Azobenzene. Phys. Chem. Chem. Phys. 2014, 16,
25883—2589S.

(54) Tully, J. C. Perspective: Nonadiabatic Dynamics Theory. J. Chem.
Phys. 2012, 137, 22A301.

(55) Rohrdanz, M. A; Zheng, W. W.; Clementi, C. Discovering
Mountain Passes via Torchlight: Methods for the Definition of Reaction
Coordinates and Pathways in Complex Macromolecular Reactions.
Annu. Rev. Phys. Chem. 2013, 64, 295—316.

(56) Bishop, C. M. Pattern Recognition and Machine Learning; Springer
Science+Business Media: New York, 2006.

(57) Amadei, A; Linssen, A. B. M.; Berendsen, H. J. C. Essential
Dynamics of Proteins. Proteins: Struct,, Funct,, Genet. 1993, 17, 412—425.

(58) Jolliffe, 1. Principal Component Analysis; Wiley Online Library,
2002.

(59) Hardle, W.; Simar, L. Applied Multivariate Statistical Analysis;
Springer: Berlin, 2007.

(60) Borg, 1; Groenen, P. J. F. Modern Multidimensional Scaling: Theory
and Applications; Springer Science & Business Media: USA, 200S.

(61) De Silva, V.; Tenenbaum, J. B. Sparse Multidimensional Scaling
Using Landmark Points; Technical report: Stanford University, 2004.

(62) Balasubramanian, M.; Schwartz, E. L. The Isomap Algorithm and
Topological Stability. Science 2002, 295, 295.

(63) Tenenbaum, J. B.; de Silva, V.; Langford, J. C. A Global Geometric
Framework for Nonlinear Dimensionality Reduction. Science 2000, 290,
2319-2323.

(64) Coifman, R. R; Lafon, S.; Lee, A. B.; Maggioni, M.; Nadler, B;
Warner, F.; Zucker, S. W. Geometric Diffusions as a Tool for Harmonic
Analysis and Structure Definition of Data: Diffusion Maps. Proc. Natl.
Acad. Sci. U. S. A. 2008, 102, 7426—7431.

(65) Coifman, R. R;; Lafon, S. Diffusion Maps. Appl. Comput. Harmon.
2006, 21, 5—30.

(66) Das, P.; Moll, M.; Stamati, H.; Kavraki, L. E.; Clementi, C. Low-
Dimensional, Free-Energy Landscapes of Protein-Folding Reactions by
Nonlinear Dimensionality Reduction. Proc. Natl. Acad. Sci. U. S. A. 2006,
103, 9885—9890.

(67) Rohrdanz, M. A.; Zheng, W. W.; Maggioni, M.; Clementi, C.
Determination of Reaction Coordinates via Locally Scaled Diffusion
Map. J. Chem. Phys. 2011, 134, 124116.

(68) Zheng, W. W.; Rohrdanz, M. A,; Maggioni, M.; Clementi, C.
Polymer Reversal Rate Calculated via Locally Scaled Diffusion Map. J.
Chem. Phys. 2011, 134, 144109.

DOI: 10.1021/acs.jctc.7b00394
J. Chem. Theory Comput. 2017, 13, 4611—-4623


http://dx.doi.org/10.1021/acs.jctc.7b00394

Journal of Chemical Theory and Computation

(69) Ceriotti, M.; Tribello, G. A.; Parrinello, M. Simplifying the
Representation of Complex Free-Energy Landscapes Using Sketch-
Map. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 13023—13028.

(70) Tribello, G. A.; Ceriotti, M.; Parrinello, M. Using Sketch-Map
Coordinates to Analyze and Bias Molecular Dynamics Simulations. Proc.
Natl. Acad. Sci. U. S. A. 2012, 109, 5196—5201.

(71) Virshup, A. M; Chen, J. H; Martinez, T. J. Nonlinear
Dimensionality Reduction for Nonadiabatic Dynamics: The Influence
of Conical Intersection Topography on Population Transfer Rates. J.
Chem. Phys. 2012, 137, 22A519.

(72) Belyaev, A. K; Domcke, W.; Lasser, C.; Trigila, G. Nonadiabatic
Nuclear Dynamics of the Ammonia Cation Studied by Surface Hopping
Classical Trajectory Calculations. J. Chem. Phys. 20185, 142, 104307.

(73) Zauleck, J. P. P.; Thallmair, S.; Loipersberger, M.; de Vivie-Riedle,
R. Two New Methods to Generate Internal Coordinates for Molecular
Wave Packet Dynamics in Reduced Dimensions. J. Chem. Theory
Comput. 2016, 12, 5698—5708.

(74) Capano, G.; Penfold, T. J.; Tavernelli I; Chergui, M.
Photophysics of a Copper Phenanthroline Elucidated by Trajectory
and Wavepacket-based Quantum Dynamics: A Synergetic Approach.
Phys. Chem. Chem. Phys. 2017, 19, 19590.

(75) Granucci, G.; Persico, M. Critical Appraisal of the Fewest
Switches Algorithm for Surface Hopping. J. Chem. Phys. 2007, 126,
134114.

(76) Kabsch, W. Solution for Best Rotation to Relate 2 Sets of Vectors.
Acta Crystallogr., Sect. A: Cryst. Phys,, Diffr,, Theor. Gen. Crystallogr. 1976,
32,922-923.

(77) Kabsch, W. Discussion of Solution for Best Rotation to Relate 2
Sets of Vectors. Acta Crystallogr,, Sect. A: Cryst. Phys,, Diffr., Theor. Gen.
Crystallogr. 1978, 34, 827—828.

(78) Dijkstra, E. W. A Note on Two Problems in Connexion with
Graphs. Numerische Mathematik 1959, 1, 269—271.

(79) Cormen, T. H,; Leiserson, C. E.; Rivest, R. L. Stein, C.
Introduction to Algorithms, 2nd ed.; MIT Press and McGraw—Hill, 2001;
pp 595—601. ISBN 0-262-03293-7.

(80) Floyd, R. W. Algorithm-97 - Shortest Path. Commun. ACM 1962,
S, 345—-345.

(81) Warshall, S. A Theorem on Boolean Matrices. J. Assoc. Comput.
Mach. 1962, 9, 11-12.

(82) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; et al. Scikit-learn:
Machine Learning in Python. J. Mach. Learn. Res. 2011, 2825—2830.

(83) Buitinck, L.; Louppe, G.; Blondel, M. et al. API Design for Machine
Learning Software: Experiences from the Scikit-learn Project; European
Conference on Machine Learning and Principles and Practices of
Knowledge Discovery in Databases; 2013; https://arxiv.org/abs/
1309.0238.

(84) Werner, H. J.; Knowles, P. J.; Knizia, G. et al. MOLPRO, version
2012.1, a package of ab initio programs; TTI, 2012.

(85) Barbatti, M.; Aquino, A. J. A; Lischka, H. Ultrafast Two-Step
Process in the Non- Adiabatic Relaxation of the CH,NH,* Molecule.
Mol. Phys. 2006, 104, 1053—1060.

(86) Weingart, O; Altoe, P.; Stenta, M.; Bottoni, A.; Orlandi, G;
Garavelli, M. Product Formation in Rhodopsin by Fast Hydrogen
Motions. Phys. Chem. Chem. Phys. 2011, 13, 3645—3648.

(87) Vreven, T.; Bernardi, F.; Garavelli, M.; Olivucci, M.; Robb, M. A;
Schlegel, H. B. Ab Initio Photoisomerization Dynamics of a Simple
Retinal Chromophore Model. J. Am. Chem. Soc. 1997, 119, 12687—
12688.

(88) Schapiro, L; Ryazantsev, M. N.; Frutos, L. M.; Ferré, N; Lindh, R ;
Olivucci, M. The Ultrafast Photoisomerizations of Rhodopsin and
Bathorhodopsin Are Modulated by Bond Length Alternation and
HOOP Driven Electronic Effects. J. Am. Chem. Soc. 2011, 133, 3354—
3364.

(89) Rockwell, N. C.; Su, Y. S.; Lagarias, J. C. Phytochrome Structure
and Signaling Mechanisms. Annu. Rev. Plant Biol. 2006, 57, 837—858.

(90) Alvey, R. M.; Biswas, A,; Schluchter, W. M.; Bryant, D. A.
Attachment of Noncognate Chromophores to CpcA of Synechocystis sp
PCC 6803 and Synechococcus sp PCC 7002 by Heterologous
Expression in Escherichia coli. Biochemistry 2011, 50, 4890—4902.

4623

(91) Strambi, A,; Durbeej, B. Initial Excited-State Relaxation of the
Bilin Chromophores of Phytochromes: A Computational Study.
Photoch. Photobio. Sci. 2011, 10, 569—579.

(92) Zhuang, X. H.; Wang, J.; Lan, Z. G. Tracking of the Molecular
Motion in the Primary Event of Photoinduced Reactions of a
Phytochromobilin Model. J. Phys. Chem. B 2013, 117, 15976—15986.

(93) Mroginski, M. A.; Murgida, D. H,; von Stetten, D.; Kneip, C,;
Mark, F.; Hildebrandt, P. Determination of the Chromophore
Structures in the Photoinduced Reaction Cycle of Phytochrome. J.
Am. Chem. Soc. 2004, 126, 16734—16735.

(94) Mroginski, M. A; Murgida, D. H.; Hildebrandt, P. The
Chromophore Structural Changes during the Photocycle of Phyto-
chrome: A Combined Resonance Raman and Quantum Chemical
Approach. Acc. Chem. Res. 2007, 40, 258—266.

(95) Keal, T. W.; Koslowski, A.; Thiel, W. Comparison of Algorithms
for Conical Intersection Optimisation Using Semiempirical Methods.
Theor. Chem. Acc. 2007, 118, 837—844.

(96) Koslowski, A.; Beck, M. E.; Thiel, W. Implementation of a General
Multireference Configuration Interaction Procedure with Analytic
Gradients In a Semiempirical Context Using the Graphical Unitary
Group Approach. J. Comput. Chem. 2003, 24, 714—726.

(97) Weber, W.; Thiel, W. Orthogonalization Corrections for
Semiempirical Methods. Theor. Chem. Acc. 2000, 103, 495—506.

(98) Thiel, W. MNDO Program, version 7.0; Max-Planck-Institut fiir
Kohlenforschung: Miilheim an der Ruhr, Germany, 200S.

(99) Rupp, M.; Tkatchenko, A.; Miiller, K. R.; von Lilienfeld, O. A. Fast
and Accurate Modeling of Molecular Atomization Energies with
Machine Learning. Phys. Rev. Lett. 2012, 108, 058301.

(100) Behler, J.; Parrinello, M. Generalized Neural-Network
Representation of High-Dimensional Potential-Energy Surfaces. Phys.
Rev. Lett. 2007, 98, 146401.

(101) Bartdk, A. P.; Payne, M. C.; Kondor, R.; Csanyi, G. Gaussian
Approximation Potentials: The Accuracy of Quantum Mechanics,
without the Electrons. Phys. Rev. Lett. 2010, 104, 136403.

(102) Bartdk, A. P.; Kondor, R.; Csanyi, G. On Representing Chemical
Environments. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87,
184115.

(103) Majumder, M.; Hegger, S. E.; Dawes, R.; Manzhos, S.; Wang, X.
G.; Tucker, C.; Li, J.; Guo, H. Explicitly Correlated MRCI-F12 Potential
Energy Surfaces for Methane Fit with Several Permutation Invariant
Schemes and Full-Dimensional Vibrational Calculations. Mol. Phys.
2015, 113, 1823—1833.

(104) Hansen, K.; Biegler, F.; Ramakrishnan, R;; Pronobis, W.; von
Lilienfeld, O. A; Miiller, K. R;; Tkatchenko, A. Machine Learning
Predictions of Molecular Properties: Accurate Many-Body Potentials
and Nonlocality in Chemical Space. J. Phys. Chem. Lett. 2018, 6, 2326—
2331.

(105) Hansen, K; Montavon, G.; Biegler, F.; Fazli, S; Rupp, M,
Scheffler, M.; von Lilienfeld, O. A.; Tkatchenko, A.; Miiller, K. R.
Assessment and Validation of Machine Learning Methods for Predicting
Molecular Atomization Energies. J. Chem. Theory Comput. 2013, 9,
3404—3419.

(106) Behler, J. Perspective: Machine Learning Potentials for
Atomistic Simulations. J. Chem. Phys. 2016, 145, 170901.

DOI: 10.1021/acs.jctc.7b00394
J. Chem. Theory Comput. 2017, 13, 4611—-4623


http://dx.doi.org/10.1021/acs.jctc.7b00394

